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Generation of ELF/VLF waves r??ﬁ‘cﬁ?&?
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electrojet current
modulated at 2kHz

heating (AG)

T 3 MHz HF emission
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injected VLF wave

geomagnetically conjugate point



HAARP (stanroro
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After upgrade in March 2006:
= 180 crossed dipole antennas

= 3.6 MW power

= ~2 GW effective radiated HF power (2.8-10
MHz) (lightning has ~20 GW isotropic ERP)
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HAARP and other HF heating [, oo
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E/N, Td

Important electron-molecule interaction
concept: Dynamic friction force
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Dynamic friction
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F= Y No,(v)Ae,

| Inelastic processes:

= Rotational,
vibrational,
electronic level
excitations

= Dissociative
losses

= |onization

(E/N),,=130 Td where 1 Td = 102! V-m? :



Kinetic Equation Solver (STANFORD
(modified ELENDIF) FHERTAGA

Time-dependent solution for f(v,t) = f,(v,t) + coso f,(v,t)
(almost isotropic)

Physical processes inluded in ELENDIF:
= Quasistatic electric field

= Elastic scattering on neutrals and ions
» Inelastic and superelastic scattering

= Electron-electron collisions

= Attachment and ionization

= Photon-electron processes

= External source of electrons

New:

= Non-static (harmonic) electric field

= Geomagnetic field



Importance of these processes F???ﬁﬁ‘?éﬁ?
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Momentum transfer rate v
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Analytical solution
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= Margenau distribution

Jo =Cexp| —

3m’

T v +2vio, 22’2)

where I=v/v, =(Nao,)=const
* Druyvesteyn distribution »=0

Jo=Cexp| —
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{4 Calculated electron distributions

f(E), normalized
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Electron distributions for various RMS E/N
(in Td). f>0 corresponds to extaordinary

wave (f,=1 MHz, h=91 km)
DC(-), f=3MHz(~-), f=7MHz(-.)

= Effective
electric field is
smaller than in

DC case:
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Breakdown field
(used for the estimate of v, ¢)
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h =91 km, extraordinary, f,=1 MHz

DC(-), f=3MHz(~-), f=7MHz(-.)
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Breakdown occurs
when v, >V

* The point of
breakdown (shown
with @) shifts up in
oscillating field
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» f(v) at ionization
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HF wave propagation F?’f?ﬁﬁ?é‘ﬂ
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= Power flux (1D), including losses:

as
—=—a($,z2)5
- (3,2)
0!:2Imk+g
R

0, 1o
k=— |1+
C OE,

* HF conductivity (ordinary/extaordinary)
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‘Normalized field,
E/E,, is shown

For comparison,
we show the
dynamic friction
function

*The N, vibrational
threshold or
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current or
upgraded HAARP
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Xx—mode

Is breakdown achievable at all?
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Propagation with no absorption
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The electric field
can be higher in a
non-steady state
case

Electric breakdown
field with altitude:

= Decreases due to
thinning
atmosphere

= But, increases due

to oscillations and
magnetization.
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h, km

Temperature modification
(daytime, x mode)
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Comparison of Maxwellian and (STANFORD
non-Maxwellian approaches SRR

f=5 MHz, x-mode
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Figure 3.5 - Steady state electron temperature profiles for
various heating powers.
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DC conductivity changes
(for electrojet current)
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Conductivity tensor (DC) F???ﬁﬁ?éﬁ?
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= Conductivity changes due to modification of
electron distribution

= Approximate formulas were used previously
* Pedersen (transverse)
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Conductivity modification T??ﬁ%ﬁ%‘%
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(x-mode, h=80 km, =0,3,7 MHz)

f=[3(--) 7(-.)] MHz; Nov03 (0) Feb07 (x)

| —— Pedersen| ]
-] —— Hall
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Solid line shows
conductivity
modifications by
DC field

Black intervals
connect the
conductivities
modified by
maximum
HAARP heating
before and after
upgrade
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ﬁfﬁﬂ at 80 km, dimensionless
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Electric current calculations F???éﬁ?é’:?
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* In most previous works, it is
assumed that the electrojet field
E.~const => inaccurate at low
frequencies (no account for the
accumulation of charge)

= We assume static current, i.e.
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Calculated AJ/J, for various

frequencies

FSTANFORD

ELECTRICAL

ENGINEERT NG

x—mode, max occurs at h=109 km

—— Nov 2003
—— Feb 2007

:

D 6
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Frequency, MHz

10

Range 70-130
km

Modified region
radius ~10 km
before upgrade
and ~5 km after
upgrade

Calculated
maximum
current and its
modification
occur at
~109km
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= Our model includes both:
= Non-Maxwellian electron distribution
= Self-absorption

= Maxwellian electron distribution models,
which calculate AT_, cannot account for
the nonlinear T, saturation.

= The non-Maxwellian model allows to
calculate processes for which high-energy
tail of the electron distribution is
important, such as:
= optical emissions
* breakdown processes.
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Work in progress T???é\lﬂ?é‘ﬂ
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= Electrojet current modulation in non-
static case

= ELF/VLF emission

= ELF/VLF wave propagation along the
geomagnetic field line
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