

It is "time to close the book on infectious disease."

Antibody

HA Antigen

Infectious Disease Today

© 2007

- At least 30 infectious diseases for which there are no cures have been identified since 1967
- One-third of deaths worldwide are caused by infectious disease

Disease	Number (millions)	Percent		
Respiratory Infection	3.9	6.90%		
HIV/AIDS	2.8	4.90%		
Diarrheal	1.8	3.20%		
Tuberculosis	1.6	2.70%		
Malaria	1.3	2.20%		
Measles	0.6	1.10%		
Pertussis	0.29	0.50%		
Tetanus	0.21	0.40%		
Meningitis	0.17	0.30%		
Risk Shaharment Solutions, Inc.	CONFIDENT QL. 16	0.30% <mark>к м</mark>		

Agenda

- RMS Profile
- Why Modeling?
- Background on Infectious Disease
- Epidemiologic Modeling
- Pandemic Flu
- RMS Pandemic Flu Model
- Pandemic Flu Impacts
- Questions and Discussion

RMS Profile

The world's leading provider of products and services for the management of catastrophe risk

- Founded at Stanford University in 1989.
- 1,000+ employees worldwide, multidisciplinary development team includes blend of experts in hazard research, actuarial science, engineering and software development.
- Solely focused on independent view of risk quantification and risk management.
 - Independent re/insurance industry
 - Subsidiary of DMG Information
- Global presence:
 - Corporate office: Newark, California
 - Regional: Illinois, New Jersey, London, Tokyo, India, Paris, Zurich, Bermuda

What RMS Does

- RMS creates probabilistic models to inform clients on types of catastrophic events that can occur, how large can they be, at what frequency and how to manage that risk
- RMS does not forecast when and where a storm will occur or how many storms will occur in a given year
- RMS quantifies what the potential damage will be from natural and man-made catastrophes
 - Earthquakes
 - Hurricanes
 - Tornados
 - Terrorism
 - Pandemic Flu
 - Fire

Applications of RMS Results

- Return Period Loss Assessment
- Data Validation
- Reinsurance Adequacy, Pricing, Optimization
- Capital Adequacy
- Geographic Concentration/Accumulations
- Premium/ Loss Evaluation
- Sensitivity Analysis
- Capacity Allocation
- Portfolio Diversification and Optimization
- Industry Loss (ILW)
- Securitizations
- Insurance Adequacy
- Business Continuity Planning
- Program Optimization

RMS Human Casualty Models

- Terrorism
 - United States
 - Global
- Earthquake
 - United States
 - Japan
 - China
- Influenza Pandemic: 31 countries
- Workers Comp Exposure Models:
 - Unknown data: address, construction type, building height
 - Time of day

U.S. Hurricane Fatalities in the Modern Era

9

Annual Loss Ratios for Earthquake Insurance in California

Why Modeling?

- Data is always best
- Models are only as good as their inputs
- Infectious disease pandemics are high consequence and low frequency events
- Modeling it the best way to understand the spread of infectious disease
- Modeling allows us to explore what is possible

Characteristics of an Infectious Disease

Antibody

HA Antigen

Infectious Disease Triad

Transmissibility

Number of secondary infections generated by a typical infectious individual in a population of mostly susceptibles at a demographic steady state

R_{0.} Basic Reproductive Number, is a function of:

- The number of contacts
- The probability of transmission given a contact
 - Time an individual is infectious

CONFIDENTIAL

Severity

- Some measurement of the severity of disease
- Death Rate- number of fatalities per number of infected
- Typically the parameter that gets media attention
- Not always straightforward
 - Asymptomatic infections
 - Sub-clinical Infections
 - What about severe complications?

The Characteristics of an Infectious Disease

A Tale of 4 Viruses

- Smallpox
- HIV
- SARS
- Influenza

Smallpox

- Variola major or Variola minor
- Not notably infectious in the prodromal period
- 12 day incubation period
- Airborne transmission
- Estimated to have killed more than 300 million in the 20th century alone
 - ~30% fatality rate

HIV

- Retrovirus
- Extremely high genetic variability
- Extremely long latency period
- 25 million deaths since 1980
- Bloodborne, sexual, and mother-to-child transmission
- No known cure

19

SARS

- Coronavirus
- Mortality rate of ~10%
- One epidemic resulting in 775 deaths
- No treatment, vaccine in production
- Low transmissibility
- Airborne transmission

20

Influenza

- Orthomyxoviridae or influenza virus
- 1918 Pandemic killed 25 million people in 25 weeks
- Leading cause of infectious disease death worldwide
- Vaccines and antivirals available
- Low death per case ratio
- Moderate transmissibility
- Airborne transmission
- Animal reservoirs

What makes infections controllable?

The difference between SARS and Flu

Pandemic Flu

Influenza

- Bird virus
- Genetically diverse
- All waterfowl infected at least once
- Mostly with Low Pathogenicity Avian Influenza (LPAI)
- Rarely with High Pathogenicity (HPAI)
- Media reports of 'Bird flu' are typically HPAI

How Pandemics Start

26

Cross-species transmission

- Mammals (people, pigs, horses) can also be infected with influenza
- Infection difficult with bird viruses
- Virus has to adapt (e.g. mutate) to transmit in mammals
- If a transmissible virus emerges, can cause a pandemic no immunity

Recent influenza A outbreaks & pandemics

Influenza A pandemics since 1800

Other outbreaks of novel strains, since
1953 (WHO surveillance established)

Year	Virus	Origin
1830	?	Russia
1836	?	Russia (?)
1889	H2	Russia
1899	H3	?
1918	H1N1	Europe/USA
1957	H2N2	China
1968	H3N2	China
(1977	H1N1	Reintroduction)

Year	Virus	Location	Source	<i>Cases</i> (Deaths)
1976	Swine (H1N1)	USA	Pigs	>100 (1)
1996	H7N7	UK	Ducks	1 (0)
1997	H5N1	Hong Kong	Chickens or ducks	18 (6)
1999	H9N2	Hong Kong	Chickens or ducks	2 (0)
2003	H7N7	Netherlands	Chickens	90-300 (1)
2003-	H5N1	Global	Ducks	300 (175)

1976 outbreak resulted in mass vaccination across USA.

Historical Catalog of Influenza Global Pandemics

		U.S. Statistics				1	
	Virus	Deaths in US	Mortality % of pop	Multiple of today's mortality	# Cases (million)	Infection Rate	Years since previous Pandemic
1889	???	50,000	0.079%	7	?	?	
1918	H1N1	500,000	0.670%	55	32	30%	29
1957	H2N2	70,000	0.040%	3	39	22%	39
1968	H3N2	40,000	0.020%	2	33	17%	11
2006	H5N1?	?	?				38
Ave year		36,000	0.012%		30	10%	29.3
			Flu	u deaths in U	.S. normaliz	ed by populat	tion
	1880 1885 1890 1895	1900 1905 1910 1915	1920 1925 1930 1935	1940 1945 1950 1955	1960 1965 1970 1975	1980 1985 1990 1995	2005

Pandemic flu uncertainties

- Transmissibility of virus
- Where transmission occurs
- Lethality of virus & case characteristics
- The effect of 'social distance measures'
- The effect of vaccination and antivirals
- Quality and timeliness of surveillance
- The effect of quarantine
- Logistics constraints
- ?????

Basic Epidemiologic Models

SIR Model

- Compartmentalized closed system differential equation model first proposed by Kermack and McKendrick in 1927 to explain observations of plague and cholera
- The complexity of the models has increased with advances in computing
- Variations on the SIR model have become the standard for deterministically modeling infectious disease epidemics

Exponential Growth?

Why doesn't the entire population get the virus?

Simulation, Step 1

CONFIDENTIAL

Simulation, Step 2

Simulation, Step 3

CONFIDENTIAL

Simulation, Final Step

CONFIDENTIAL

Geographical Limits to Growth Susceptible Infected Recovered Ĭ.

38

Factors Limiting Viral Spread

- Herd Immunity- Transmission cannot be sustained if there are not a sufficient number of susceptibles
- Quarantine- Sick people are less likely to be in the community transmitting disease
- Residual Immunity- Infection or vaccination with a similar strain
- Mortality- Dead people are less likely to transmit disease
- Medical Treatment- Reduces contacts and some treatments may also reduce transmission probabilities
- Geography- Most people stay within a small geographic region

Effect of R₀ on an Epidemic, no mortality

40

Effect of High Mortality Rates in Limiting Infection

41

An Example SIR Framework

To/ From other Regions

Drawbacks of Epidemiologic Modeling

- Model is only as good as its inputs
- Without a thorough understanding of the inputs and their relative impact SIR models can be "black boxes"
- Can be very unstable
- Deterministic (one set of initial conditions, leads to one answer)
- Requires many runs of the model to understand uncertainty and the impact of each variable

Benefits of Epidemiologic Modeling

- Model progresses in small timesteps
- Interventions can be added at any time
- Efficacy of different interventions can be compared
- Can understand transmission dynamics
- Simulation modeling using the SIR framework can be used to characterize uncertainty

CONFIDENTIAL

Infinitely adaptable to fit different diseases, initial conditions, and interventions

RMS Pandemic Model

Antibody

Influenza Pandemic Modeling Framework

Epidemiological Model

Combination of Death per Case (DpC) and Initial Reproductive Number (R0) Stochastic Model

RMS Stochastic Model Framework

Annual Probability of Pandemic

- In the 20th century, influenza pandemics occurred in 1918, 1957 and most recently in 1968. Before then, a pandemic occurred in 1889.
- Pandemics occur randomly in time. The elapsed interval since the previous pandemic is not necessarily a guide to the imminence of the next pandemic. An empirical baseline historical average estimate of pandemic frequency is 4 per 120 years, i.e. 3.3%.
- Conditional on a candidate pandemic virus circulating, (as is the case with H5N1), the annual probability of reassortment might be increased above the baseline historical average, depending on the number of cases of avian flu in humans.

Infectiousness Modeling

Long-tailed distribution for the Basic Reproductive Ratio R₀

- There is considerable variability in R₀ due to a wide range of factors that may compound the process of infection spread.
- A Lognormal distribution is appropriate for representing this variability, since it can be constructed as a product of a number of multiplicative virological factors.
- Expert scientific judgement parameterizes the distribution with a median value of 2.5, and a 1% chance of exceeding 4.0.
- The distribution is truncated at 1.0, the minimum epidemic threshold.

Lethality Modeling

Long-tailed distribution for the Death Per Case **DpC**

- The Death Per Case (DpC) is modeled by a Weibull distribution:
 - Pr (DpC > X) = exp ($[X/A]^B$)
- This type of distribution is commonly used for statistical survivor analysis.
- It is assumed that there is a 1/3 chance of exceeding the DpC in 1918, corrected for improved mortality since then.

Infectiousness & Lethality of Pandemic Viruses

Representative Pandemic Scenarios

51

Demographic Profile

'Cytokine storm' kills young adults with strong immune response systems

More severe pandemics may cause higher losses to young healthy individuals

Region of Origin: International Spread Model

Volume of passenger trips **per day** between international airports

- Outbreak source in each of five regions
 - 1 'Under-developed' SE Asia
 - 2 Japan, Hong Kong, Taiwan
 - 3 Russia, Balkans, Eastern Europe
 - 4 Western Countries
 - 5 Africa & ROW
- Different probabilities per region
- Modeled spread rate across the globe
- Incorporates national measures to contain, prevent and delay spread

Vaccination is not a panacea

- Vaccines are designed to cause protective antibodies against the HA antigen
- Specific to a single viral strain
- Currently, egg-based production method
- Effectiveness of cross-immunity or a poorly matched strain is unknown
- United States currently has limited manufacturing capabilities
 - Vaccination priorities vary by country

National Response Measures

United States

Japan

Taiwan

Thailand

Malaysia

China

South Korea

Antiviral Strategy

Tamiflu stockpile, Domestic vaccine production Target Group Prioritization

Tamiflu stockpile, Domestic vaccine production

Target Group Prioritization

Oseltamivir stockpile

Contribution of 18 m USD for flu vaccine production

Tamiflu stockpile, Domestic vaccine production

Target Group Prioritization Tamiflu stockpile, Domestic vaccine production Target Group Prioritization

Antiviral stockpile;

Target Group Prioritization

Antiviral stockpile; Domestic Vaccine Production

Target Group Prioritization

Antiviral stockpile;

Target Group Prioritization

Primary Healthcare

Deployable mass casualty capability used to supplement hospitals.

Coordination of different levels of medical supply structure

Hospitals activated in accordance with the needs of flu pandemic.

NHS will establish ways of caring for large numbers of patients on a scale outside normal experience.

Increase hospital capacity; develop availability for field hospitals.

Hospital System-Weak System

All medical resources mobilize and set up temporary clinics – Weak system

Hospital system

Containment and Quarantine

Patient isolation and identification, monitoring, quarantine of contacts

School closures, work hour reduction, public transportation closure

Isolation, closing schools and restricting public gatherings

Border control

Public health and/or 'social distancing' measures to reduce morbidity and/or contain spread

Screening of travelers, possible quarantine measures

Quarantine areas within a three km radius of any suspected case. house to house checks.

Alert System; Possible quarantine. Travel restrictions

Alert System; Possible quarantine. Travel restrictions

National Response Measures

Quarantine

- Social distancingtravel restrictions, school closures
- Response of the healthcare system
- Pharmaceuticals
 - Vaccination

Key Response Variables Affecting Pandemic

- Vaccine production speed, efficacy and manufacturing capacity
- Vaccination implementation
- Behavior of individuals
- Resources and initiative applied by government responders
- Time before pandemic arrival

Moderately sensitive to:

- Tamiflu stockpiles
- Primary healthcare quality
- Warning (Disease surveillance capability)

Less sensitive to:

- Location of initial outbreak
- Closure of borders and imposed travel restraints

Pandemic Flu Impacts

Antibody

Scenarios

	Fictitious illustrations of potential influenza pandemics	Infectiousness (Speed of spread)	Pathogenicity ("lethality")	Illness Demographic (Ages worst hit)	Pandemic Severity
E4	Hanoi Flu Pandemic Fairly severe pandemic –H5N1 reassortment - originating in Southeast Asia, Similar to 1918 virus characteristics	Rapid spread R0=2.7	Moderately high DpC = 2.8%	Immune response hits middle age	Severe
F2	Turkish Flu Moderate pandemic – H5N1 shift, More severe than 1957 pandemic	V. Rapid spread R0=3.1	Moderate DpC = 0.5%	All ages equally affected	Moderate
D1	British Influenza Mild but likely pandemic – H1N1 drift, Similar to 1968 pandemic	Slow spread R0=2.0	Low DpC = 0.05%	Old and young worst affected	Mild
F6	Niger Virus Very severe pandemic – Highly pathogenic H5N1 reassortment. Unprecedented but feasible	V. Rapid spread R0=3.8	Very high DpC = 33%	Immune response hits middle age, Children infected but not sick	Very Severe

Fictional Scenario: Hanoi Flu Pandemic

Severity:

Severe

Type: H5N1 reassortment

R0: 2.75

DpC: 2.5% initial

- Age: 'Cytokine Storm' Mortality Profile
- Origin: Vietnam [Region 1]

Start: Jan 2007

- Vaccine: 5 months to production, 20% increased manufacturing capacity, 75% efficacy
- Response: Government plans executed as expected
- Lifespan: Yr 2 impact 10% of year 1

Precedent: Similar virus parameters to 1918

CNN 🚟	FREE VICED	Interne
SEARCH (THE WEB CONNeom	SEARCH
Home Page World U.S. Weather Business at CNKMonry Sports at SLow	Hanoi flu spread Yamaguchi Province under enf Thursday, February 22, 2007	s to Japan orced quarantine
Politics Law Technology Science & Space Health Entertainment Travel Education Special Reports Video	TOKYO, Japan (CNN) – Suspected cases of the deadly Hanoi flu in four provinces of Japan prompted official action to contain the epidemic by sealing off roads and preventing travel. Fears of infection running through Japanese cities prompted swift action by archorites rouringt	
Autos viti Edwadu.cm CD.05+ EUROPE Fly for less C139+ AMSTERDAM Wilfight C13+Int CRUISE In MEDITERRANEAN Sherman's Top 251 (1002) SERVICES	Emergency plans were implemented and stockpiles of Tamifu were issued to healthcare teams across the country. Civil rights protestors demanding drugs for all were last right blockading health ministry buildings in Osaka. nappen ursi.	Blockades last night prevented travelers from leaving Tokuyama city, location of several suspected cases of Hanol flu, now ravaging Vietnam and China. Advertiser Ints: what's this? Discourt Medical Care Plan \$59 95 Month
CNN Pipeline E-mail Newsletters	But it says even a mild pandemic could kill 1.4 million people and cost \$330 billion.	Discount medical plan including dental, vision, prescription, and chiropractic

Timeline: First Two Months

Jan 2007 Initial cluster of 30 unusual flu cases in Northwestern Vietnam leads to additional cases in Hanoi.

Stock markets worldwide react badly to the news

By the end of the month 13 are dead in Vietnam and 200 in hospital.

Over 1,000 cases are confirmed. World Health Organization team in Hanoi issues stockpiled anti-viral drugs to health teams

All known contacts of confirmed cases are quarantined and given antivirals

A suspected case is reported in Hong Kong

Analysis from case-tracing suggests the R0 to be above 2.5, and possibly as high as 3.2. Lethality unable to be measured yet

RMS provides clients with a broad range estimate of likely worldwide impact of pandemic

Feb 200722 cases now confirmed in Hong Kong. Suspected cases reported in China
and Japan. Japan declares national pandemic alert

WHO criticized for delays in announcing stage 3 global pandemic ("We need to be sure" says spokesman)

Australia closes its borders – only air travel 'essential to national security' allowed in and out. Traffic reduced by 99% but 4,000 people still enter Australia per day. Border closure delays pandemic entering Australia by 2 weeks

Air travel in SE Asia heavily impacted

Impact appears low in children; symptoms suggest immune-response causes of death

Analysis of speed of spread suggests R0 is 2.5 to 2.9. Death rate of cases appears to be less than 5%. RMS model revises estimates of spread, lethality and likely age profile.

Impact of 'Hanoi Flu' Scenario on US

- 800,000 people die (0.27% of US population)
- 25% of the population are made sick
- 4.8 million people need hospital care
- 40 million people need treatment
- Among the US workforce, 333 millions days of lost production due to staff sickness
- Loss of about 7% productivity in the worst 3 month period, 2% of national production for the year

Economic impact of Hanoi Flu

- Congressional Budget Office estimates 5% of lost US GDP in severe pandemic similar to 1918
- Other studies
 - McKibbon & Sidorenko: 5.5% of GDP in US
 - Cooper: 6% of GDP in US
 - Kennedy, Thompson & Vujanovic: 6% of GDP Australia
 - New Zealand Treasury: 5-10% of GDP, New Zealand
 - James & Sargent: 0.3 to 1.1%, Canada & Advanced Economies
- Economic activity expected to snap back after pandemic ends
- Some studies (e.g. J&S) conclude minimal impacts on retail sales, shipping or supply chains

Comparison of Two Pandemic Scenarios

CONFIDENTIAL

64

G

Pandemic type affects economic loss

	Direct Cost	Supply Shock	Demand Shock
A Non-Event	Minimal	Minimal	Initial, short lived
B Rapid, Moderate	Moderate	Moderate	Lengthy but subsiding
C V Fast, Pervasive	Moderate-High	Everyone affected	Short, subsiding
D Slow, Deadly, Low Loss	Minimal	Minimal	Panic
E Rapid, High Loss	High	High	Lengthy
F V Fast, V High Impact	Very High	Very High	Short but severe

CONFIDENTIAL

Economic sectoral impact from pandemic

	Direct Cost	Supply Shock	Demand Shock
Travel and tourism	-	•	•
Public gatherings	-	•	•
Public transport	-	•	•
Education	-	•	•
Retail high street	-	•	•
Large labor industries	-	•	•
Fragile Businesses	-	•	•
Life insurance	•	•	+
Medical Suppliers	+	•	-
Pharmaceuticals	+	•	-
On-line retail	-	•	+
Telecoms	-	•	+
Virtual companies	-	\bigcirc	+
Pension Funds	\bigcirc	•	-

66

Business Continuity Planning for Pandemic

- 1. Ensure continuity of essential services and operations during an extended period of high illness rates in the workforce
- 2. Ensure that its employees do not, through their office interaction, suffer any higher rates of infection than the general population
- 3. Ensure that as soon as the pandemic cycle is over, the company resumes operations rapidly and competitively

Measures include:

- Duplication of staffing of critical operations
- Home-working
- Pre-emptive office closures
- Minimizing travel
- Managed or minimized customer interaction
- Suspension of certain trading activities (e.g. new sales of life insurance)
- Staff health monitoring

Cats have tails

- Pandemic influenza, like other catastrophe perils, has severe events of diminishing likelihood
- A "1918" event does not represent a worst case
- The US pandemic preparedness plan prepares for up to 2 million fatalities
- A worst case would be a virus with the pathogenicity of H5N1 and the infectiousness of H1N1, but this is extremely unlikely
- Extreme events are limited by behavioral actions by the public and the resources and ingenuity of our public protection systems

Conclusion

- Despite advances in healthcare infectious disease is still the greatest catastrophic threat facing human populations
- Modeling helps us understand and plan for what has happened and for what is possible
- Modeling is currently the best method to understand the spread of infectious disease and the implications of interventions

Model Specifications for Influenza

Geographic Scope – 31 countries

- Australia, Austria, Belgium, Brazil, Canada, China, France, Germany, Hong Kong, India, Indonesia, Ireland, Italy, Japan, Malaysia, Netherlands, Philippines, Poland, Russia, Singapore, South Africa, South Korea, Spain, Sweden, Switzerland, Taiwan, Thailand, Turkey, United Kingdom, United States, Vietnam
- **Exposure Analyze**: Deaths, hospitalized, critical care, infected
- Analysis Types: Deterministic (Scenario), Probabilistic (OEP)
- Stochastic Model: 1,890 unique scenarios; vary based on virus infectiousness and lethality of virus, demographic impact, location of outbreak, and pandemic lifecycle

