

INCIDENT RESPONSE
TECHNICAL REPORT

(Forensic Findings and Analysis Report

INCIDENT RESPONSE
TECHNICAL REPORT

Supplement

Forensic Findings and Analysis Report)

July 21, 2010

Version 1.0

INCIDENT RESPONSE

)

Confidential - QinetiQ - 2

Confidential – Do Not Distribute

Document Revision History

Date Version Description Author

July 7, 2010 0.1 First Draft Michael Spohn

July 10, 2010 0.2 Review Phil Wallisch

July 21, 2010 1.0 Client Release Michael Spohn

Confidential - QinetiQ - 3

Table of Contents

1 Background .. 4

2 Findings ... 5

3. Recommendations .. 6

4. Identified Malware and Tools .. 8

5. Compromised Systems .. 21

6. Investigation Scope and Methodology .. 24

6.1. Task-1 - Complete deployment and scans of 1400 hosts ... 24

6.2. Task-2 - Security scans and analysis of Windows hosts .. 24

Appendix – I Consulting Hours ... 28

Table of Figures

Figure 1 - Mailyh.dll communication graph ... 10

Figure 2 - Mailyh.dll configuration graph ... 11

Figure 3 - Ntshrui.dll C&C graph .. 12

Figure 4 - Active Defense Deployment... 25

Table of Tables

Table 1 – Compromised Systems .. 21

Table 2 – Inoculation Shot Malware Remediation .. 26

Confidential - QinetiQ - 4

 1 Background

Beginning in March 2010, HBGary, Inc. was contracted to assist in the identification, analysis, and
removal of malware from QinetiQ North America (QNA) internal systems. This was in response to
what QNA believed to be an organized and sophisticated cyber attack involving the potential theft
of ITAR controlled data. HBGary was given background on the attack, which included information
on targeted attacks on digital data systems that have occurred in the past.

HBGary deployed the 'Active Defense' platform to scan endpoints for malicious software and
indicators of compromise. Over the course of the total
engagement, agents were deployed to 1,948 endpoints.
In total, seven different malicious tools were discovered
in association with the cyber-attack. Over the entire
network, 71 hosts were discovered to be affected by the
cyber attack. These systems were subsequently
cleaned using HBGary's inoculation technology, or
mitigated directly by the QNA network staff.

The work was carried out in two phases. The first phase focused on an initial set of 1,400 hosts, of
which 746 were scanned. The results of the phase-1 scans were published in the HBGary
"Forensic Findings and Analysis Report," dated May 12, 2010. This comprehensive report details
the findings, threat assessment, and advanced methodologies used to identify attacker tools and
techniques.

The second phase was to complete the tasks required to scan additional QNA systems, and a
second Statement of Work (SOW) was signed on May 24, 2010. This second SOW contained two
tasks:

- Task one involved completion of deployment and scans of the original 1,400 hosts described
in the original SOW. This task was performed at no cost to QNA.

- Task two involved the deployment of 'Active Defense' agents to the remaining systems within
the QNA environment, scanning those systems for IOC’s, and analyzing identified malware.
Task two also included the creation of Intrusion Detection System (IDS) signatures as required
and the use of HBGary's 'inoculator' to remediate infected systems.

This report details the work completed by HBGary security consultants for the second SOW. It
includes findings, recommendations, and a detailed description of the tasks performed. It is a
supplement to the previous QNA report published by HBGary.

For additional information regarding the overall QNA threat assessment including threat history
and attribution, open source intelligence, general structure of malware found, details of secondary
command and control channel operation, and indicators of compromise, refer to the HBGary
"Forensic Findings and Analysis Report."

Final stat: 71 systems
were detected as

compromised out of

1,948 that were scanned.

Confidential - QinetiQ - 5

 2 Findings

This section provides a synopsis of the investigative findings during this investigation

2.1. QinetiQ North America (QNA) continues to be the victim of targeted attacks by
sophisticated cybercriminals.

QNA has experienced two major targeted attack incidents in the last year. There is a high
likelihood the organized criminal element behind these attacks will continue attempts to
compromise QNA systems. It is critical that QNA establish and maintain a mature and
effective security posture to defeat these attacks. The recommendations from this and
previous investigations should be incorporated into QNA’s defense strategy going forward.

2.2. This joint investigation identified seven (7) malware variants related to the
unauthorized access by the intruder(s).

The recovered malware provides three capabilities to the intruder(s). One variant of identified
malware (mailyh.dll) contains the ability to connect to Internet based web servers via HTTP
and download files or command/control (C2) instructions. The URL’s hardcoded in this
malware contains QNA content indicating those URL’s were specifically targeting QNA. A
second capability of recovered malware (update.exe) performs a detailed inventory
(reconnaissance) of the system it runs on and stores the information in an encrypted file.
These files are collected from compromised systems and transferred externally. The third
capability identified is remote C2 of compromised systems including the ability to transfer files,
run system commands, and connect to other systems on the network (Iprnip.dll, ntshrui.dll).
Details of the malware found during this investigation can be found in Section Four.

2.3. There were seventy one (71) identified systems compromised by the intruders using
one or more of the malware files identified in 2.2.

A table of the listed systems can be found in Section 5.

Confidential - QinetiQ - 6

3. Recommendations

This section provides recommendations for improving the QNA security posture based on the
investigative findings in this investigation.

3.1. Narrow the gap between the identification, containment, and remediation of
compromised systems.

During this investigation, there was a long delay from compromised system identification to
remediation. This should be addressed immediately. A system triage process must be
adopted and implemented. The time from identification to containment of a compromised
system should be measured in minutes or hours, but should not exceed 24 hours. The time
between containment and remediation should be measured in hours, but should never
exceed 72 hours.

3.2. Increase the oversight and maintenance of Active Directory.

During this investigation, the Active Directory systems within QNA provided inconsistent data.
This interfered with the deployment of A/D agents. A top-down review of the DNS systems
within QNA should be conducted. Retired, duplicate, and re-deployed systems should be
identified and removed from the database. Systems that have not logged in within the last 90
days should be investigated and purged as required. Expand the asset inventory efforts and
create updated network diagrams.

3.3. Closely monitor and control domain administrator accounts.

The attacker(s) in this incident, as in most attacks, highly value the acquisition of domain
administrator credentials. Thus, domain administrator credentials should be closely protected.
Limit the number of domain admin accounts, use extremely complex passwords and change
them often, and restrict domain admin accounts from service accounts. Consider
implementing two-factor authentication for domain administrators.

3.4. Continue consistent scanning and analysis of systems for Indicator’s of Compromise
(IOC’s).

The value of end-node IOC scanning proved very valuable during this investigation.
Implement a capability to continue the monitoring and scanning of QNA systems for IOC’s.
HBGary provides a managed service offering to accomplish this.

3.5. Log Domain Name Service (DNS) requests and alert on all requests to known dynamic
DNS sites.

Attackers often use dynamic DNS sites rather than individual IP addressing in their attack
tools. Dynamic DNS allows them great flexibility and mobility in the hosting of malicious web
servers and C2 systems. All QNA DNS requests should be logged. A list of known dynamic
DNS providers should be created and kept current. DNS alerts should be triggered whenever
a dynamic DNS lookup occurs.

3.6. Continue to closely monitor/capture outbound network traffic.

The IDS and other network monitoring tools in place should be closely monitored for alerts
and other anomalies based on existing knowledge of the attacker(s) behaviors and tools.
Logging levels should be high and logs should be kept online for at least three months and
offline for at least six months.

3.7. Closely monitor the enterprise anti-virus service (A/V) and establish high compliance
rates.

Even though traditional (A/V) solutions are not capable of dealing with APT type attacks, they
still serve a valuable role in your security program. Make sure the enterprise (A/V) systems

Confidential - QinetiQ - 7

are monitored on a daily basis and ensure end-point agents and DAT signature files are
current within three days. Establish an end-point compliance rate of 90% or higher. Schedule
full A/V scans of all systems at least once a week.

3.8. Identify and document ‘high value’ data and the associated computer systems

During this incident, it was difficult to identify systems that contained QNA intellectual
property (IP), classified data, or data regulated by government or regulatory agencies (i.e.
ITAR data). Every system in the QNA enterprise should be reviewed, classified, and
documented by system type (server, workstation, mobile device, etc.), owner, role, and data
content. This list must be updated regularly, should be stored in a very secure location, and
readily available to the incident response team.

3.9. Improve the emergency incident response management process.

The incident management process should be improved. There were multiple vendors
assisting in the identification, containment, and remediation of systems during this incident.
Although there were daily status calls, roles between the vendors were not clearly defined.
Detailed documents and spreadsheets were created to track compromised systems and
IOC’s, yet there was no master-task sheet tracking all of the internal and external activities,
responsibilities, and findings.

3.10. Create or improve an/the Incident Response Program.

Many of the recommendations in this section focus on asset identification, classification and
protection, incident containment and remediation, and incident management processes.
These are all components of a formal incident response program. HBGary recommends QNA
review their existing incident management practices and determine if existing incident
response policies, standards, guidelines, and procedures are effective. If a formal incident
response program is in place, is it robust and meeting the needs of the organization? If no
program exists, one should be created.

Confidential - QinetiQ - 8

4. Identified Malware and Tools

During this investigation, there seven (7) files identified as targeted attack software or tools used
by the intruder(s).Some of the files identified during this investigation were analyzed by other
vendors. Refer to the particular vendor investigative report for details of these files.

Note: Malware variants discovered during this investigation that have no attribution to the targeted
attacks are not included in this report.

4.1. Iprnip.dll

Two variants of this malware were identified in the environment. It was installed as a Windows
services and survives system reboot. This malware allows the attackers to take control of a
compromised system via a remote command and control (C2) encrypted communication
channel.

The malware allows the attackers to execute system commands, transfer files, create and kill
processes and services, and connect to other systems.

The second variant of iprinp.dll is similar to the first variant but it uses an embedded MSN
Messenger client to provide C2 via Microsoft’s hosted messaging services.

History of the strain

The Iprinp malware is a variant of Chinese-developed malware dating back over five years. It
is a well known and used variety of malware that is customized and built from source code
(that is, not an attack toolkit/generator). HBGary believes this malware strain to be tightly
coupled to a Chinese hacking group that targets the DoD and its contractors. HBGary has
code-named this threat group as "Soysauce". This group is also known as 'Comment Crew'
by some, and also as 'GIF89a' by some. The choice of codename is completely arbitrary in
this context and is simply meant to identify a group of Chinese hackers who have a consistent
agenda to target the defense industrial complex. Refer to the HBGary "Forensic Findings and
Analysis Report." for more detailed information.

Indicators of Compromise

Several IOC's can be used to detect variants of the iprinp malware strain. When using IOC's
it is important to focus on general properties that are not likely to change between builds, or
variants, of the malware. As such, the IOC can be used to detect new forms of the same
strain. Refer to the HBGary "Forensic Findings and Analysis Report." for more detailed
information.

Confidential - QinetiQ - 9

4.2. Mailyh.dll

Three instances of this malware were found in the environment. This malware installs itself as
a service (Schedsvc.dll) in order to survive reboot. It contains a simple routine to check for
Internet connectivity then connects via HTTP to a series of hard-coded URL’s, potentially to
download additional malware.

Indicators of Compromise

Several IOC's can be used to detect variants of the mailyh.dll malware strain.

The following strings can be searched for in physical memory to detect this malware:

• "windows/cartoon"

• "[FakeDomain]"

• "xsl dll service global event"

• "XSLAuto"

• "XSLPlug"

Look for schedsvc.dll in unexpected locations (for example c:\windows, or a temp path)

Check for the following file artifacts on disk:

• c:\windows\system32\chkdiska.dat

• c:\windows\system32\chkdiskb.dat

• c:\windows\system32\chkdiskc.dat

• c:\windows\system32\javacfg.ini

• c:\mailyh.dll

• c:\XSL_SR.txt

• dllserver.dll

Command & Control Capability

The following DNS names are used for communication:

• mystats.dynalias.org

• translate.google.com

• babelfish.yahoo.com

• www.sina.com.cn

The following IP addresses were recovered from the encrypted C2 data blocks within the
malware:

• 120.50.47.28 (from decryption of config data)

• 66.98.206.31:443 (from decryption of config data)

Confidential

It should be noted that some of the hard

• mystats.dynalias.org/net/qnao.html

• google.com/translate?***n&u=http://120.50.47.28/net/qnao.html?

• yahoo.com/translate_url?trurl=http://120.50.47.28/net/qnao.html?

This indicates this malware was specifically targeted to the QNA environment.

Network IDS Signatures

The following URL's can be used to construct network IDS signatures for C2 communication to
this malware variant:

• http://mystats.dynalias.org/net/qnao.html

• http://120.50.47.28/net/qnao.html

• http://translate.google.com/translate?prev=hp&hl=en
qnao.html?

• http://babelfish.yahoo.com/translate_url?doit=done&tt=url&intl=1&fr=bf
home&trurl=http://120.50.47.28/net/qnao.html?[random number inserted
here]&lp=en_fr&btnTrUrl=Translate

• http://1234/config .htm

Figure 1 - Mailyh.dll communication graph

- QinetiQ -

It should be noted that some of the hard-coded URL’s contain QNA specific refer

mystats.dynalias.org/net/qnao.html

google.com/translate?***n&u=http://120.50.47.28/net/qnao.html?

yahoo.com/translate_url?trurl=http://120.50.47.28/net/qnao.html?

This indicates this malware was specifically targeted to the QNA environment.

The following URL's can be used to construct network IDS signatures for C2 communication to

http://mystats.dynalias.org/net/qnao.html

http://120.50.47.28/net/qnao.html

http://translate.google.com/translate?prev=hp&hl=en&js=n&u=http://120.50.47.28/net/

http://babelfish.yahoo.com/translate_url?doit=done&tt=url&intl=1&fr=bf
home&trurl=http://120.50.47.28/net/qnao.html?[random number inserted
here]&lp=en_fr&btnTrUrl=Translate

http://1234/config .htm

communication graph

10

coded URL’s contain QNA specific references:

This indicates this malware was specifically targeted to the QNA environment.

The following URL's can be used to construct network IDS signatures for C2 communication to

&js=n&u=http://120.50.47.28/net/

http://babelfish.yahoo.com/translate_url?doit=done&tt=url&intl=1&fr=bf-
home&trurl=http://120.50.47.28/net/qnao.html?[random number inserted

Confidential

Figure 2 - Mailyh.dll configuration

Remediation

Locate Schedsvc.dll and verify date/time and size and
If mismatched, remove service and restore correct schedsvc.dll

- QinetiQ -

figuration graph

Locate Schedsvc.dll and verify date/time and size and Microsoft digital signature
If mismatched, remove service and restore correct schedsvc.dll

11

Microsoft digital signature

Confidential

4.3. Mspoiscon.exe

This malware was identified in a previous QNA incident

4.4. Ntshrui.dll

This malware takes advantage of the Windows file path search order to get loaded instead of
the legitimate ntshrui.dll file located in Windows
legitimate ntshrui.dll is supposed to be loaded when a user logs on. This
the Windows file explorer.

Since the malicious ntshrui.dll is dropped into the
loader before the legitimate file located one folder lower. The malicious ntshrui.dll is hard
coded to connect to a specific IP address and download a specific HTML file. If successful, the
downloaded file provides command instructions for the malware to execute.

Command & Control Capability

Figure 5 below is a schematic of the command and control capabilities

Figure 3 - Ntshrui.dll C&C graph

- QinetiQ -

This malware was identified in a previous QNA incident and was not analyzed by HBGary.

This malware takes advantage of the Windows file path search order to get loaded instead of
the legitimate ntshrui.dll file located in Windows\system32 folder. The Microsoft Windows
legitimate ntshrui.dll is supposed to be loaded when a user logs on. This dll is an extension to

Since the malicious ntshrui.dll is dropped into the \Windows folder it is located by the Windows
loader before the legitimate file located one folder lower. The malicious ntshrui.dll is hard

t to a specific IP address and download a specific HTML file. If successful, the
downloaded file provides command instructions for the malware to execute.

Command & Control Capability

Figure 5 below is a schematic of the command and control capabilities of ntshrui.dll.

Ntshrui.dll C&C graph

12

and was not analyzed by HBGary.

This malware takes advantage of the Windows file path search order to get loaded instead of
system32 folder. The Microsoft Windows

dll is an extension to

Windows folder it is located by the Windows
loader before the legitimate file located one folder lower. The malicious ntshrui.dll is hard

t to a specific IP address and download a specific HTML file. If successful, the
downloaded file provides command instructions for the malware to execute.

of ntshrui.dll.

Confidential - QinetiQ - 13

Below is a description of the command and control capabilities of ntshrui.dll.

The sample launches a thread to perform communication:

100019FF push 0x100017F0 // thread_worker_routine

10001A04 push 0x0

10001A06 push 0x0

10001A08 call dword ptr [0x1000204C] // __imp_MSVCRT.dll!_beginthreadex[77C3A3DB]

The thread worker routine then calls LoadLibrary on wininet.dll & urlmon.dll and initializes func-
tion pointers to the following functions (see sub_10001000):

data_PTR_InternetCloseHandle

data_PTR_InternetOpenA

data_PTR_InternetOpenUrlA

data_PTR_InternetReadFile

data_PTR_URLDownloadToFileA

The thread worker routine operates in a loop with a sleep delay. For each work cycle, an en-
crypted buffer is read:

10003100 : 26 42 5E 5E 5A 10 05 05 18 1B 1C 04 1B 1F 04 18 &B^^Z...........

10003110 : 1B 1A 04 1C 12 05 1B 13 1D 04 1B 04 1B 1C 04 19

10003120 : 75 1F 04 42 5E 47 46 0C 00 00 00 00 u..B^GF.....

The decrypted buffer is used with InternetReadFile to read a C2 packet from remote. The work
continues in a loop reading the entire file from remote. The read buffer is then passed to a de-
cryptor. The sample will use GetTempPath to find a location on the local system to download
data to.

The GetTempPath function checks for the existence of environment variables in the following
order and uses the first path found:

1. The path specified by the TMP environment variable.
2. The path specified by the TEMP environment variable.
3. The path specified by the USERPROFILE environment variable.
4. The Windows directory.

The sample then uses UrlDownloadToFile to download a file from a remote site to the local
path.

HRESULT URLDownloadToFile(

 LPUNKNOWN pCaller,

 LPCTSTR szURL,

 LPCTSTR szFileName,

 DWORD dwReserved,

 LPBINDSTATUSCALLBACK lpfnCB

);

Using the decrypted URL, the connection made to:
http://216.15.210.68/197.1.16.3_5.html

with the following User-Agent: field:
Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)

Once a file is downloaded, it will be decompressed using the LzOpenFile api calls. This ac-
counts for any files with the compressed header 'SZDD'.

Confidential - QinetiQ - 14

Encryption/Decryption

HBGary has reverse engineering the encryption algorithm for ntshrui.dll and the decryptor is
described here:

The decryptor function uses redundant-jump pairing to thwart disassembly:

1000119C 0F 84 07 00 00 00 je 0x100011A9▼ // loc_100011A9

100011A2 loc_100011A2:

100011A2 0F 85 01 00 00 00 jne 0x100011A9

Once these have been worked-around, the decryptor function de-obfuscates to:

10001190 sub_10001190:

10001190 55 push ebp

10001191 8B EC mov ebp,esp

10001193 81 EC 0C 04 00 00 sub esp,0x0000040C

10001199 53 push ebx

1000119A 56 push esi

1000119B 57 push edi

1000119C 0F 84 07 00 00 00 je 0x100011A9▼ // loc_100011A9

100011A2 loc_100011A2:

100011A2 0F 85 01 00 00 00 jne 0x100011A9

100011A8 F8 clc

100011A9 loc_100011A9:

100011A9 C7 85 F8 FB FF FF 00 00 00 00 mov dword ptr [ebp-0x00000408],0x0

100011B3 0F 84 07 00 00 00 je 0x100011C0

100011B9 : 0F 85 01 00 00 00 E6

100011C0 loc_100011C0:

100011C0 C7 85 F4 FB FF FF 00 00 00 00 mov dword ptr [ebp-0x0000040C],0x0

100011CA 0F 84 07 00 00 00 je 0x100011D7

100011D0 0F 85 01 00 00 00 jne 0x100011D7

100011D6 C4 C7 les eax,edi // alignment error

100011D7 loc_100011D7:

100011D7 C7 45 FC 00 00 00 00 mov dword ptr [ebp-0x4],0x0

100011DE 0F 84 07 00 00 00 je 0x100011EB

100011E4 : 0F 85 01 00 00 00 E7

100011EB loc_100011EB:

100011EB C6 85 FC FB FF FF 00 mov byte ptr [ebp-0x00000404],0x0

100011F2 B9 FF 00 00 00 mov ecx,0xFF

100011F7 33 C0 xor eax,eax

100011F9 8D BD FD FB FF FF lea edi,[ebp-0x00000403]

100011FF F3 AB rep stosd

10001201 66 AB stosw

10001203 AA stosb

10001204 0F 84 07 00 00 00 je 0x10001211 // alignment error

10001206 : 07 00 00 00

1000120A loc_1000120A:

1000120A 0F 85 01 00 00 00 jne 0x10001211

10001210 : E1 .

10001211 loc_10001211:

A buffer at this location:

100030E1 ASCII: P]]Nt

100030E1 : 50 5D 5D 4E 74 00 00 0C 7E 63 6F 6F 62 06 0D 01 P]]Nt...~coob...

100030F1 : 0A 16 0F 0E 4E 00 00 N..

10001211 68 E8 30 00 10 push 0x100030E8

10001216 8D 85 FC FB FF FF lea eax,[ebp-0x00000404]

1000121C 50 push eax

1000121D E8 DE 06 00 00 call 0x10001900

10001222 83 C4 08 add esp,0x8

10001225 50 push eax

10001226 8B 4D 08 mov ecx,dword ptr [ebp+0x8]

10001229 51 push ecx

1000122A FF 15 40 20 00 10 call dword ptr [0x10002040] //

__imp_MSVCRT.dll!strstr[77C47C60]

10001230 loc_10001230:

10001230 83 C4 08 add esp,0x8

10001233 89 85 F8 FB FF FF mov dword ptr [ebp-0x00000408],eax

Confidential - QinetiQ - 15

10001239 0F 84 07 00 00 00 je 0x10001246

1000123F : 0F 85 01 00 00 00 E6

10001246 loc_10001246:

10001246 8D BD FC FB FF FF lea edi,[ebp-0x00000404]

1000124C 83 C9 FF or ecx,0xFFFFFFFF

1000124F 33 C0 xor eax,eax

10001251 F2 AE repnz scasb

10001253 F7 D1 not ecx

10001255 83 C1 FF add ecx,0xFFFFFFFF

10001258 89 4D FC mov dword ptr [ebp-0x4],ecx

1000125B 0F 84 07 00 00 00 je 0x10001268

10001261 : 0F 85 01 00 00 00 F8

10001268 loc_10001268:

10001268 83 BD F8 FB FF FF 00 cmp dword ptr [ebp-0x00000408],0x0

1000126F 75 07 jne 0x10001278▼ // loc_10001278

10001271 loc_10001271:

10001271 33 C0 xor eax,eax

10001273 E9 18 02 00 00 jmp 0x10001490▼ // loc_10001490

10001278 loc_10001278:

10001278 0F 84 07 00 00 00 je 0x10001285

1000127E : 0F 85 01 00 00 00 A3

10001285 loc_10001285:

10001285 8B 95 F8 FB FF FF mov edx,dword ptr [ebp-0x00000408]

1000128B 03 55 FC add edx,dword ptr [ebp-0x4]

1000128E 89 95 F8 FB FF FF mov dword ptr [ebp-0x00000408],edx

10001294 0F 84 07 00 00 00 je 0x100012A1

1000129A : 0F 85 01 00 00 00 C4

100012A1 loc_100012A1:

100012A1 6A 20 push 0x20

100012A3 8B 85 F8 FB FF FF mov eax,dword ptr [ebp-0x00000408]

100012A9 50 push eax

100012AA FF 15 3C 20 00 10 call dword ptr [0x1000203C] //

__imp_MSVCRT.dll!strchr[77C47660]

100012B0 loc_100012B0:

100012B0 83 C4 08 add esp,0x8

100012B3 89 85 F4 FB FF FF mov dword ptr [ebp-

0x0000040C:ptr_string2]:string2,eax:string2

100012B9 0F 84 07 00 00 00 je 0x100012C6

100012BF : 0F 85 01 00 00 00 E6

100012C6 loc_100012C6:

100012C6 83 BD F4 FB FF FF 00 cmp dword ptr [ebp-0x0000040C],0x0

100012CD 75 14 jne 0x100012E3

100012CF 0F 84 07 00 00 00 je 0x100012DC // alignment error

100012D0 : 84 07 00 00 00 0F 85 01 00 00 00 23 33 C0 E9 AD#3...

100012E0 : 01 00 00 ...

100012E3 loc_100012E3:

100012E3 0F 84 07 00 00 00 je 0x100012F0 // alignment error

100012E4 : 84 07 00 00 00 0F 85 01 00 00 00 E7

100012F0 loc_100012F0:

100012F0 68 E0 30 00 10 push 0x100030E0 // data_100030E0

100012F5 8D 8D FC FB FF FF lea ecx,[ebp-0x00000404]

100012FB 51 push ecx

100012FC E8 FF 05 00 00 call 0x10001900

10001301 call_strncmp:

10001301 83 C4 08 add esp,0x8

10001304 8D BD FC FB FF FF lea edi:string2,[ebp-0x00000404]:string2

1000130A 83 C9 FF or ecx,0xFFFFFFFF

1000130D 33 C0 xor eax,eax

1000130F F2 AE repnz scasb

10001311 F7 D1 not ecx

10001313 83 C1 FF add ecx:count,0xFFFFFFFF

10001316 51 push ecx:count

10001317 8D 95 FC FB FF FF lea edx:string2,[ebp-0x00000404]:string2

1000131D 52 push edx:string2

1000131E 8B 85 F4 FB FF FF mov eax:string1,dword ptr [ebp-

0x0000040C:ptr_string1]:string1

10001324 50 push eax:string1

10001325 FF 15 38 20 00 10 call dword ptr [0x10002038] //

__imp_MSVCRT.dll!strncmp[77C47A50]

1000132B loc_1000132B:

1000132B 83 C4 0C add esp,0xC

1000132E 85 C0 test eax,eax

10001330 74 14 je 0x10001346

10001332 eax != 0:

Confidential - QinetiQ - 16

10001332 0F 84 07 00 00 00 je 0x1000133F

10001338 : 0F 85 01 00 00 00 E9

1000133F loc_1000133F:

1000133F 33 C0 xor eax,eax

10001341 E9 4A 01 00 00 jmp 0x10001490

10001346 8B 8D F4 FB FF FF mov ecx,dword ptr [ebp-0x0000040C]

1000134C C6 01 00 mov byte ptr [ecx],0x0

1000134F 8D BD FC FB FF FF lea edi,[ebp-0x00000404]

10001355 83 C9 FF or ecx,0xFFFFFFFF

10001358 33 C0 xor eax,eax

1000135A F2 AE repnz scasb

1000135C F7 D1 not ecx

1000135E 83 C1 FF add ecx,0xFFFFFFFF

10001361 51 push ecx

10001362 68 D8 30 00 10 push 0x100030D8 // data_100030D8

10001367 8D 95 FC FB FF FF lea edx,[ebp-0x00000404]

1000136D 52 push edx

1000136E E8 8D 05 00 00 call 0x10001900

10001373 loc_10001373:

10001373 83 C4 08 add esp,0x8

10001376 50 push eax

10001377 8B 85 F8 FB FF FF mov eax,dword ptr [ebp-0x00000408]

1000137D 50 push eax

1000137E FF 15 38 20 00 10 call dword ptr [0x10002038] //

__imp_MSVCRT.dll!strncmp[77C47A50]

10001384 loc_10001384:

10001384 83 C4 0C add esp,0xC

10001387 85 C0 test eax,eax

10001389 75 1B jne 0x100013A6

1000138B loc_1000138B:

1000138B 0F 84 07 00 00 00 je 0x10001398

10001391 : 0F 85 01 00 00 00 E6

10001398 loc_10001398:

10001398 8B 4D 0C mov ecx,dword ptr [ebp+0xC]

1000139B C7 01 01 00 00 00 mov dword ptr [ecx],0x1

100013A1 E9 E5 00 00 00 jmp 0x1000148B

100013A6 8D BD FC FB FF FF lea edi,[ebp-0x00000404]

100013AC 83 C9 FF or ecx,0xFFFFFFFF

100013AF 33 C0 xor eax,eax

100013B1 F2 AE repnz scasb

100013B3 F7 D1 not ecx

100013B5 83 C1 FF add ecx,0xFFFFFFFF

100013B8 51 push ecx

100013B9 68 CC 30 00 10 push 0x100030CC // data_100030CC

100013BE 8D 95 FC FB FF FF lea edx,[ebp-0x00000404]

100013C4 52 push edx

100013C5 E8 36 05 00 00 call 0x10001900

100013CA loc_100013CA:

100013CA 83 C4 08 add esp,0x8

100013CD 50 push eax

100013CE 8B 85 F8 FB FF FF mov eax,dword ptr [ebp-0x00000408]

100013D4 50 push eax

100013D5 FF 15 38 20 00 10 call dword ptr [0x10002038] //

__imp_MSVCRT.dll!strncmp[77C47A50]

100013DB loc_100013DB:

100013DB 83 C4 0C add esp,0xC

100013DE 85 C0 test eax,eax

100013E0 75 35 jne 0x10001417▼ // loc_10001417

100013E2 loc_100013E2:

100013E2 8B 4D 0C mov ecx,dword ptr [ebp+0xC]

100013E5 C7 01 02 00 00 00 mov dword ptr [ecx],0x2

100013EB 8D BD FC FB FF FF lea edi,[ebp-0x00000404]

100013F1 83 C9 FF or ecx,0xFFFFFFFF

100013F4 33 C0 xor eax,eax

100013F6 F2 AE repnz scasb

100013F8 F7 D1 not ecx

100013FA 83 C1 FF add ecx,0xFFFFFFFF

100013FD 8B 95 F8 FB FF FF mov edx,dword ptr [ebp-0x00000408]

10001403 03 D1 add edx,ecx

10001405 52 push edx

10001406 FF 15 34 20 00 10 call dword ptr [0x10002034] //

__imp_MSVCRT.dll!atoi[77C1BF18]

1000140C loc_1000140C:

1000140C 83 C4 04 add esp,0x4

Confidential - QinetiQ - 17

1000140F 8B 4D 0C mov ecx,dword ptr [ebp+0xC]

10001412 89 41 04 mov dword ptr [ecx+0x4],eax

10001415 EB 74 jmp 0x1000148B▼ // loc_1000148B

10001417 loc_10001417:

10001417 8D BD FC FB FF FF lea edi,[ebp-0x00000404]

1000141D 83 C9 FF or ecx,0xFFFFFFFF

10001420 33 C0 xor eax,eax

10001422 F2 AE repnz scasb

10001424 F7 D1 not ecx

10001426 83 C1 FF add ecx,0xFFFFFFFF

10001429 51 push ecx

1000142A 68 C0 30 00 10 push 0x100030C0 // data_100030C0

1000142F 8D 95 FC FB FF FF lea edx,[ebp-0x00000404]

10001435 52 push edx

10001436 E8 C5 04 00 00 call 0x10001900▼ // sub_10001900

1000143B loc_1000143B:

1000143B 83 C4 08 add esp,0x8

1000143E 50 push eax

1000143F 8B 85 F8 FB FF FF mov eax,dword ptr [ebp-0x00000408]

10001445 50 push eax

10001446 FF 15 38 20 00 10 call dword ptr [0x10002038] //

__imp_MSVCRT.dll!strncmp[77C47A50]

1000144C loc_1000144C:

1000144C 83 C4 0C add esp,0xC

1000144F 85 C0 test eax,eax

10001451 75 34 jne 0x10001487▼ // loc_10001487

10001453 loc_10001453:

10001453 8B 4D 0C mov ecx,dword ptr [ebp+0xC]

10001456 C7 01 03 00 00 00 mov dword ptr [ecx],0x3

1000145C 8B BD F8 FB FF FF mov edi,dword ptr [ebp-0x00000408]

10001462 8B 55 0C mov edx,dword ptr [ebp+0xC]

10001465 83 C2 08 add edx,0x8

10001468 83 C9 FF or ecx,0xFFFFFFFF

1000146B 33 C0 xor eax,eax

1000146D F2 AE repnz scasb

1000146F F7 D1 not ecx

10001471 2B F9 sub edi,ecx

10001473 8B F7 mov esi,edi

10001475 8B C1 mov eax,ecx

10001477 8B FA mov edi,edx

10001479 C1 E9 02 shr ecx,0x2

1000147C F3 A5 rep movsd

1000147E 8B C8 mov ecx,eax

10001480 83 E1 03 and ecx,0x3

10001483 F3 A4 rep movsb

10001485 EB 04 jmp 0x1000148B▼ // loc_1000148B

10001487 loc_10001487:

10001487 33 C0 xor eax,eax

10001489 EB 05 jmp 0x10001490▼ // loc_10001490

1000148B loc_1000148B:

1000148B B8 01 00 00 00 mov eax,0x1

10001490 loc_10001490:

10001490 5F pop edi

10001491 5E pop esi

10001492 5B pop ebx

10001493 8B E5 mov esp:c,ebp:c

10001495 5D pop ebp

10001496 C3 ret

 ...

The above function has been hand-deobfuscated.
Call by the above function:

10001900 called by decryptor:

10001900 55 push ebp

10001901 8B EC mov ebp,esp

10001903 83 EC 0C sub esp,0xC

10001906 53 push ebx

10001907 56 push esi

10001908 57 push edi

10001909 0F 84 07 00 00 00 je 0x10001916

1000190F : 0F 85 01 00 00 00 E6

10001916 loc_10001916:

Confidential - QinetiQ - 18

10001916 8B 45 0C mov eax,dword ptr [ebp+0xC]

10001919 0F BE 08 movsx ecx,byte ptr [eax]

1000191C 89 4D F4 mov dword ptr [ebp-0xC],ecx

1000191F 0F 84 07 00 00 00 je 0x1000192C // alignment error

10001921 : 07 00 00 00 0F 85 01 00 00 00 E1

1000192C loc_1000192C:

1000192C 8B 55 0C mov edx,dword ptr [ebp+0xC]

1000192F 03 55 F4 add edx,dword ptr [ebp-0xC]

10001932 0F BE 42 01 movsx eax,byte ptr [edx+0x1]

10001936 33 45 F4 xor eax,dword ptr [ebp-0xC]

10001939 89 45 FC mov dword ptr [ebp-0x4],eax

1000193C 0F 84 07 00 00 00 je 0x10001949 // alignment error

1000193F : 00 00 00 0F 85 01 00 00 00 E4

10001949 loc_10001949:

10001949 C7 45 F8 00 00 00 00 mov dword ptr [ebp-0x8],0x0

10001950 EB 09 jmp 0x1000195B

10001952 loc_10001952:

10001952 8B 4D F8 mov ecx,dword ptr [ebp-0x8]

10001955 83 C1 01 add ecx,0x1

10001958 89 4D F8 mov dword ptr [ebp-0x8],ecx

1000195B loc_1000195B:

1000195B 8B 55 F8 mov edx,dword ptr [ebp-0x8]

1000195E 3B 55 F4 cmp edx,dword ptr [ebp-0xC]

10001961 7D 31 jge 0x10001994

10001963 loc_10001963:

10001963 0F 84 07 00 00 00 je 0x10001970

10001969 : 0F 85 01 00 00 00 E6

10001970 loc_10001970:

10001970 8B 45 0C mov eax,dword ptr [ebp+0xC]

10001973 03 45 F8 add eax,dword ptr [ebp-0x8]

10001976 0F BE 48 01 movsx ecx,byte ptr [eax+0x1]

1000197A 33 4D FC xor ecx,dword ptr [ebp-0x4]

1000197D 8B 55 08 mov edx,dword ptr [ebp+0x8]

10001980 03 55 F8 add edx,dword ptr [ebp-0x8]

10001983 88 0A mov byte ptr [edx],cl

10001985 0F 84 07 00 00 00 je 0x10001992

1000198B : 0F 85 01 00 00 00 A3

10001992 loc_10001992:

10001992 EB BE jmp 0x10001952

10001994 0F 84 07 00 00 00 je 0x100019A1

1000199A 0F 85 01 00 00 00 jne 0x100019A1 // alignment error

1000199C : 01 00 00 00 E2

100019A1 loc_100019A1:

100019A1 8B 45 08 mov eax,dword ptr [ebp+0x8]

100019A4 03 45 F8 add eax,dword ptr [ebp-0x8]

100019A7 C6 00 00 mov byte ptr [eax],0x0

100019AA 0F 84 07 00 00 00 je 0x100019B7

100019B0 : 0F 85 01 00 00 00 E9

100019B7 loc_100019B7:

100019B7 8B 45 08 mov eax,dword ptr [ebp+0x8]

100019BA 5F pop edi

100019BB loc_100019BB:

100019BB 5E pop esi

100019BC 5B pop ebx

100019BD 8B E5 mov esp,ebp

100019BF 5D pop ebp

100019C0 C3 ret

Again, hand deobfuscated.

Confidential - QinetiQ - 19

Decryption Utility

HBGary has reverse engineering the encryption algorithm for ntshrui.dll and the decryptor is
described here:

The following source code can be used to decrypt C2 control data for the ntshrui.dll malware:
The decryption algorithm is shown below:

decrypt(out_buffer, in_buffer)
{

 int_8 length = (byte ptr) in_buffer[0];
 byte key = in_buffer[length+1]; // note this is one past end of buffer, this byte is

post-pended
 key = key XOR length; // key is XOR'd against length to create final key that will be

used
 int count = 0;

 while(count < length)
 {

 byte decrypted = in_buffer[count + 1]; // offset +1 to skip the first byte of the
buffer which was used for length above

 decrypted = decrypted XOR key; // byte is now decrypted
 out_buffer[count] = decrypted;

 count++;
 }

}

Here is sourcecode that will decrypt the buffers both in the malware and in transit over the net-
work:

void decrypt(char *buffer)

{

int length = buffer[0];

unsigned char key = buffer[length+1];

key ^= length;

int count = 0;

while(count < length)

{

unsigned char decrypted = buffer[count+1];

decrypted ^= key;

putchar(decrypted);

count++;

}

putchar('\n');

}

int _tmain(int argc, _TCHAR* argv[])

{

decrypt("\x0C\x7E\x63\x6F\x6F\x62\x06\x0D\x01\x0A\x16\x0F\x0E\x4E\x00\x00"); //<!-- DOCHTML

decrypt("\x04\x50\x5D\x5D\x4E\x74\x00\x00"); // -->

decrypt("\x05\x91\xA5\xA3\xBF\xA6\xD5\x00"); // Ausov

decrypt("\x06\x65\x51\x50\x4C\x4B\x56\x22\x00\x00\x00\x00"); //Author

decrypt("\x07\x2B\x37\x37\x33\x79\x6C\x6C\x44\x00\x00\x00"); //http://

decrypt(

"\x32\x1C\x3E\x2B\x38\x3D\x3D\x30\x7E\x65\x7F\x61\x71\x79\x32\x3E\x3C\x21\x30\x25\x38\x33\x3D

\x34\x6A\x71\x1C\x02\x18\x14\x71\x67"

"\x7F\x61\x6A\x71\x06\x38\x3F\x35\x3E\x26\x22\x71\x1F\x05\x71\x64"

"\x7F\x60\x78\x63\x00\x00\x00\x00"); // Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)

decrypt("\x03\x23\x3E\x23\x45\x00\x00\x00"); // exe

decrypt("\x26\x42\x5E\x5E\x5A\x10\x05\x05\x18\x1B\x1C\x04\x1B\x1F\x04\x18"

"\x1B\x1A\x04\x1C\x12\x05\x1B\x13\x1D\x04\x1B\x04\x1B\x1C\x04\x19"

"\x75\x1F\x04\x42\x5E\x47\x46\x0C\x00\x00\x00\x00"); //http://216.15.210.68/197.1.16.3_5.html

return 0;

}

Confidential - QinetiQ - 20

Remediation

Files downloaded with ntshrui.dll will contain the 'SZDD' header due to compression. This is a
highly effective IOC to detect this system in use, and can also be applied at the network
perimeter.

4.5. mine.asf

This malware was not active. It is a variant of a Chinese keylogger, otherwise known as

PsKey400.

4.6. svchost.exe

The file 'svchost.exe' was found by another team and provided to HBGary. HBGary analyzed

the target long enough to determine this was a renamed copy of a tool called 'RemCom', which

can be downloaded for free from the Internet. The 'RemCom' tool provides remote access to a

machine and is considered a remote-access-tool (RAT). No further analysis was performed on

this target.

4.7. rasauto32.dll

This malware was reverse engineered by another team.

4.8. Update.exe

This malware file is coded for a very specific purpose: to inventory the system it is runs on.
This application collects and logs system information including installed software, running
services, recent document links, administrative user profile information, internet history, and
the files and links on the desktop.

This information is first written to an unencrypted text file (ErroInfo.sy). When the system
inventory is complete, the application reads the text log file and writes it out to an encrypted
file (ErroInfo.sys). The unencrypted log file is then deleted.

This malware does not have the ability to communicate on the network. It’s only function is to
inventory and document a system.

HBGary performed a raw disk IOC scan to determine if update.exe had been executed on any
of the systems. Not a single system appeared to have actually executed update.exe. This
may indicate that update.exe was part of an attack-in-progress that was unfinished. If so, it is
likely that detecting and removing update.exe thwarted an active attack.

Confidential - QinetiQ - 21

5. Compromised Systems

Table 1 identifies the systems within the QNA network that contained one or more of the malware
files identified in this investigation.

Note: HBGary did not perform forensic analysis on compromised systems since that was the
responsibility of other vendors. If the system compromise date is known to HBGary, it is listed in
the below table.

Table 1 – Compromised Systems

Compromised Systems

Host Name IP Address Malware Identified Date of Compromise

1 315_SERVERRM 10.2.40.151 update.exe

2 ABQAPPS 10.40.6.34 iprnip.dll

3 AI-ENGINEER-3 10.27.64.34 update.exe

4 AI-ENGINEER-4 10.27.64.62 update.exe 5/12/2010 2210

5 ALLMAN1CBM 10.2.40.70 update.exe

6 APIUSERLT 10.27.64.40 update.exe 5/12/2010 2209

7 ARSOAFS 10.2.27.104 iprnip.dll

8 ATKPRODUCTION01 10.27.64.23 update.exe 5/12/2010 2210

9 ATKSRVDC01 10.27.123.30 mailyh.dll

10 ATKSRVDC01 10.27.123.30 mspoiscon.exe

11 AVNLIC 10.2.50.77 update.exe

12 BBOURGEOISDT 10.26.192.30 mailyh.dll, mspoiscon.exe

13 BELL2CBM 10.2.40.78 update.exe

14 BRUBINSTEINDT2 10.27.64.41 update.exe

15 BSTANCILDT 10.27.64.74 update.exe

16 CBADSEC01 10.27.187.11 mailyh.dll

17 CBADSEC01 10.27.187.11 mspoiscon.exe

18 CBM_AMBROZAITIS 10.2.40.99 Update.exe 5/12/2010 2151

19 CBM_BAKER 10.2.40.172 update.exe

20 CBM_BAUGHN 10.2.40.95 update.exe

21 CBM_CHOPPER 10.2.40.19 Update.exe 5/12/2010 2148

22 CBM_FETHEROLF 10.2.40.97 update.exe

23 CBM_FETHEROLF 10.2.30.140 update.exe

24 CBM_HICKMAN4 10.2.40.102 update.exe

25 CBM_LUKER2 10.2.40.100 update.exe

26 CBM_MASON 10.2.40.110 update.exe

27 CBM_OREILLY1 10.2.40.33 update.exe

28 CBM_RASOOL 10.2.40.25 update.exe

29 CBM_ABSTON3 10.2.40.185 update.exe

30 CBM_AMBROZAITIS 10.2.40.99 update.exe

31 CBM_DEZENBERG 10.2.40.166 update.exe

32 CBMTURBO 10.2.40.71 update.exe

Confidential - QinetiQ - 22

Compromised Systems

Host Name IP Address Malware Identified Date of Compromise

33 CBM_WILLIAMSON 10.2.40.42 update.exe

34 CHENAULT1ELCS 10.2.40.125 update.exe 5/12/2010 2146

35 COCHRAN1CBM 10.2.40.46 update.exe

36 CHESNUTT_HEC 10.2.50.91 update.exe

37 COMPUTER 10.2.30.59 update.exe

38 DAWKINS2CBM 10.2.40.109 update.exe

39 DLV_LNELSON 10.2.30.47 Update.exe 5/12/2010 2142

40 DLV_TNANCE 10.32.128.25 ntshrui.dll

41 DSPELLMANDT 10.27.64.73 update.exe

42 EMCCLELLAN_HEC 10.2.30.38 update.exe, izarccm.dll

43 EMUTSCHLERDT 10.27.64.59 update.exe 5/12/2010 2210

44 EXECSECOND 10.2.40.116 update.exe

45 FAIRCHILD3_HEC 10.2.30.49 update.exe

46 FANNIN01CBM 10.2.40.21 Update.exe 5/12/2010 2149

47 FEDLOG_HEC 10.2.6.68 update.exe

48 FOREMAN2CBM 10.2.40.160 update.exe 5/12/2010 2146

49 FORTIFY1 10.2.40.146 update.exe

50 GRAY_VM.QNAO 10.2.20.141 update.exe

51 HAINES3_HEC 10.2.40.81 update.exe

52 HEC_4950TEMP1 10.2.40.138 update.exe

53 HEC_ADDISON 10.2.30.156 update.exe

54 HEC_AMTHOMAS 10.2.40.211 update.exe

55 HEC_AVTEMP1 10.2.50.48 update.exe

56 HEC_BBROWN 10.2.50.52 update.exe

57 HEC_BLUDSWORTH 10.2.20.39 update.exe

58 HEC_BRPOUNDERS 10.2.30.159 update.exe

59 HEC_BRUNSON 10.2.30.112 update.exe

60 HEC_BSTEWART 10.2.20.70 update.exe

61 HEC_BWATSON 10.2.30.151 update.exe

62 HEC_CANTRELL 10.2.50.89 update.exe

63 HEC_CDAUWEN 10.2.30.184 update.exe

64 HEC_CCASEY 10.2.30.179

65 HEC_FORTE 10.2.20.10 iprnip.dll

66 HEC_HOVANES2 10.2.30.96 msvid32.dll

67 HEC_JWHITE 10.2.30.150 ntshrui.dll

68 HEC_KGUNNELS 10.2.50.37 update.exe 5/12/2010 2152

69 HEC_RTIESZEN 10.2.20.15 ntshrui.dll

70 HEC_RTIESZEN 10.2.20.15 iprnip.dll

71 HEC-WSMITH 10.2.30.73 update.exe

Confidential - QinetiQ - 23

Compromised Systems

Host Name IP Address Malware Identified Date of Compromise

72 MLEPOREDT 10.10.64.171 rasauto32.dll

73 NPATELLT 10.10.112.36 vjocx.dll, update.exe

74 PCBMMISHLELT 10.34.0.24 izarccm.dll

75 RES3HTQNAODC1 10.54.8.19 update.exe

76 SDJSANTOSOLT1 10.24.64.55 izarccm.dll

77 STAFANORMANDLT 10.18.8.84 izarccm.dll

78 STAFBGEISSLERLT 10.18.8.247 izarccm.dll

79 STAFRMARSHLT 10.18.8.35 izarccm.dll

Confidential - QinetiQ - 24

6. Investigation Scope and Methodology

The scope of the SOW related to this report requires HBGary to complete two investigative tasks.

1. Complete deployment and scans of 1,400 hosts.

2. Security scans and analysis of Windows hosts.

Task one involves completion of Active Defense (A/D) agent deployment and scans of the 1,400
hosts described in the first SOW. This task was performed at no cost to QNA.

Task two involves the deployment of HBGary Enterprise agents to the remaining systems within
the QNA environment, scanning those systems for IOC’s, triaging scan results, and analyzing
identified malware. Task two also includes the creation of Intrusion Detection System (IDS)
signatures as required and the deployment of the HBGary Innoculator to remediate infected
systems.

6.1. Task-1 - Complete deployment and scans of 1400 hosts

The initial work effort focused on 1,400 QNA systems believed targeted by the intruder(s). Due to
network connectivity issues and focused efforts on malware analysis and attribution, only 746
systems were scanned. Task-1 in the second SOW involves the completion of agent deployment
and scans of the remaining 654 systems.

Work on this task began on Monday, June 7, 2010. Efforts were focused on identifying the
reason(s) the A/D server could not successfully deploy agents to these systems. System and
network analysis identified five main reasons agent deployment failed.

• The system did not connect to the QNA network during this project.

• The system had duplicate entries in Active Directory and could not be located.

• The system had an Active Directory entry but had been removed from service.

• The system did not have the required networking services running.

• Network security devices prevented required network communication.

Collaboration with QNA IT server and network personnel resolved issues surrounding duplicate
Active Directory entries, retired systems, and network security restrictions. Workarounds were
identified for systems that lacked required network services. The problem of portable systems
connecting to the network was not resolved.

By Thursday, June 10, 2010, the HBGary A/D server successfully deployed agents and scanned
1,310 of the 1,400 systems. The remaining 90 systems were eliminated from the pool of systems
because they were no longer in service or did not connect to the network.

6.2. Task-2 - Security scans and analysis of Windows hosts

Active Defense Agent Deployment

The second task of this engagement involved the deployment of DDNA agents to the remaining
systems in the QNA enterprise. This includes a total of approximately 2,600 servers,
workstations, and laptops.

Work on this task began on June 11, 2010. Agent deployment results were mixed due to the
same five issues encountered in the initial deployment. HBGary and QNA technical staff
remediated as many issues as possible. Figure 1 provides a graphic showing the A/D agent
deployment success.

Confidential - QinetiQ - 25

Figure 4 - Active Defense Deployment

HBGary was provided a list of QNA systems obtained from two sources: Enterprise Active
Directory and McAfee’s ePO managed system list. These lists were consolidated into a single
system list that contained 2,635 systems. This list was imported into the A/D server and agent
deployment covering the entire QNA enterprise began on June 11, 2010.

A/D agents were successfully deployed to 1,948 QNA servers, workstations and laptops, and
DDNA scans were completed. Once the DDNA scan completes, these systems are defined as
‘managed systems.’

Agent deployment failed on 43 systems due to duplicate DNS entries. When a DNS server
returns more than one result for a system, the A/D server is unable to determine which system to
deploy too. Thus the server will log this as an error for manual resolution.

There were 217 systems that could not be located via DNS lookups. If there is no DNS entry in
the Active Directory database, A/D agent deployment will fail.

The A/D server was unable to locate 371 systems that resolved via DNS. There are usually two
reasons for this: First, the system in question may be a mobile device that has intermittent
connections to the enterprise network. Second, the system may no longer be in service, or has
been moved to another domain. When a system is retired, moved to another network/domain, or
redeployed, if the Active Directory entry for that system is not updated, that system will resolve
via DNS. When the A/D server attempts to connect to the system, it will fail.

Finally, there were 56 systems the A/D server failed in agent deployment due to miscellaneous
other connectivity issues. Most often this was caused by network connectivity issues or system
configuration issues preventing remote connectivity.

Confidential - QinetiQ - 26

Managed System Triage

Once the A/D agent deployment task and initial DDNA scans completed on the managed
systems, HBGary investigators began triaging scan results. This involves the review of each
system DDNA score and other IOC’s and classifying the system into three categories: 1) Clean –
no IOC’s, 2) Look at Closer (LAC), 3) Infected.

When a system was identified as ‘Infected,’ the master system list was reviewed to see if this
system had already been identified as compromised by QNA security, other vendors, or in
previous incidents. If the system was not on the master list, QNA security personnel were
immediately notified so analysis and remediation efforts could begin as soon as possible.

When a system was classified as LAC, investigators performed a deep memory analysis of the
system to identify an IOC’s. Once this analysis was completed, the system was moved to ‘Clean’
or ‘Infected’ status.

During the triaging of the QNA systems, several artifacts of malware not associated with this
investigation were located. As instructed by QNA, these potentially unwanted programs (PUP’s)
were not deeply analyzed.

Additional IOC’s and previously known malware directly related to this investigation were located
during the system triage process. These systems were added to the master system list. All of the
systems HBGary identified as compromised are listed in Table 1.

Indicator’s of Compromise (IOC) Scans

A large effort during this engagement involved the collection and documentation of IOC’s related
to the tools and techniques used by the attacker(s). HBGary investigators worked closely with
the QNA security team to catalog these IOC’s and group them into A/D scan policies. A total of
34 IOC scan policies were created and deployed during this engagement. DDNA scores
combined with well-defined IOC scan policies produce a powerful capability of finding malware.

Inoculation Shot

The final tool used by HBGary investigators was the Inoculation Shot. This unique and powerful
remediation tool provides customized identification and remediation capabilities based on IOC’s
located in the QNA environment.

A custom Inoculation Shot tool was created for QNA designed to identify and remediate systems
compromised by one of the eight know variants of malware found during this investigation. The
malware file name and file system locations are shown in Table 2 below.

Table 2 – Inoculation Shot Malware Remediation

Malware File File Location

IPRINP.Dll \windows\system32\iprinp.dll

MSPOISCON.EXE \windows\system32\MSPOISCON.exe

NTSHRUI.Dll \windows\NTSHRUI.dll

RASAUTO32.dll \windows\system32\RASAUTO32.dll

UPDATE.EXE \windows\system32\UPDATE.EXE, \windows\temp\temp

Confidential - QinetiQ - 27

The Inoculation shot was deployed in the QNA enterprise on 1,363 systems. First, a scan of
these systems was performed to identify any system that contained any of the malware variants.
All systems that contained any malware identified by the Inoculator, were forwarded to QNA IT
security for review. If QNA requested the identified systems be remediated, the Inoculator was
executed again on those systems and the malware was removed.

Confidential - QinetiQ - 28

Appendix – I Consulting Hours

Date Consultant Total Hours Remaining Hours

6/7/2010 Phil Wallisch 10 160

6/7/2010 Michael Spohn 2 158

6/8/2010 Phil Wallisch 10 148

6/8/2010 Michael Spohn 2 146

6/9/2010 Phil Wallisch 10 136

6/9/2010 Michael Spohn 2 134

6/10/2010 Phil Wallisch 10 124

6/11/2010 Michael Spohn 2 122

6/11/2010 Phil Wallisch 6 116

6/14/2010 Phil Wallisch 8 108

6/14/2010 Michael Spohn 4 104

6/15/2010 Phil Wallisch 8 96

6/15/2010 Michael Spohn 5 91

6/16/2010 Phil Wallisch 8 83

6/16/2010 Michael Spohn 6 77

6/17/2010 MIchael Spohn 4 73

6/18/2010 MIchael Spohn 8 65

6/21/2010 MIchael Spohn 8 57

6/22/2010 Michael Spohn 8 49

6/23/2010 Michael Spohn 8 41

6/24/2010 Michael Spohn 8 33

6/25/2010 Michael Spohn 8 25

6/28/2010 Michael Spohn 6 19

6/29/2010 Michael Spohn 8 11

6/30/2010 Michael Spohn 9 2

7/1/2010 Michael Spohn 2 0

Totals Hours: 170

SOW Hours = 170

