The Road to 72-120 hr forecasting and SEEMS, the Space Environmental Effects Monitoring System

Briefing to the

National Space Weather Panel

9 Jan 06

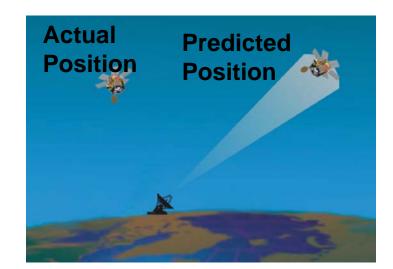
David Cooke, James Metcalf Lt. Col. David Bell,

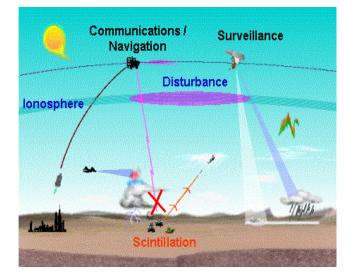
Joel Mozer, PhD

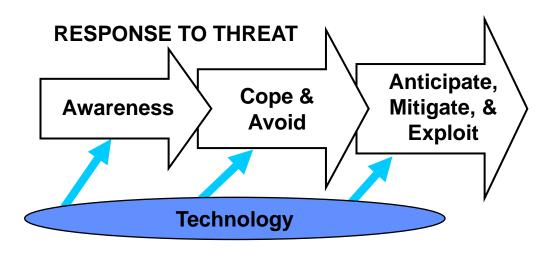
Space Weather Center of Excellence

Space Vehicles Directorate

Air Force Research Laboratory

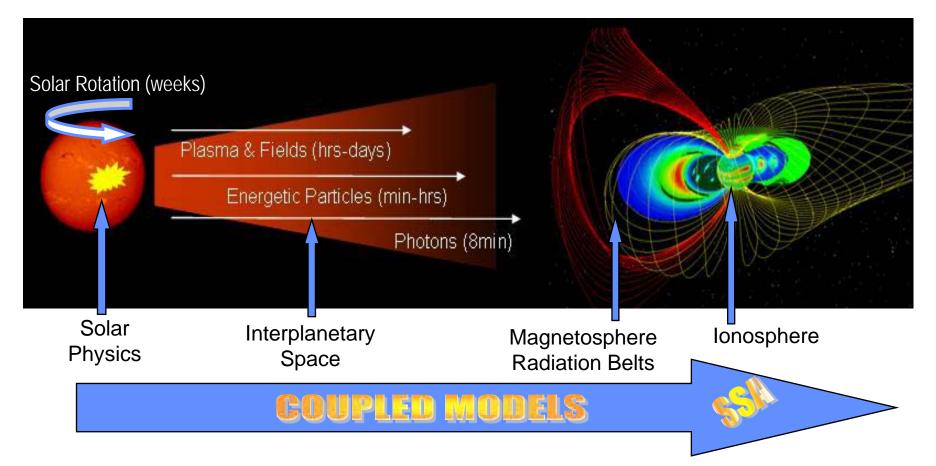



Space Environmental Monitoring & Effects Impacts

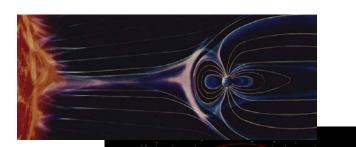


The natural space environment affects military operations because warfighters depend on space-based assets to execute combat missions

- > Single event upsets (SEUs) due to high energy particles
- Satellite position errors due to changes in atmospheric density
- Comm/nav capability degraded or lost because of ionospheric anomalies
- Radar false target identification due to ionospheric anomalies
- > Long-term degradation of spacecraft due to environment
- > Optical & RF anomalies due to solar emission
- Discrimination between natural & man-made effects on spacecraft



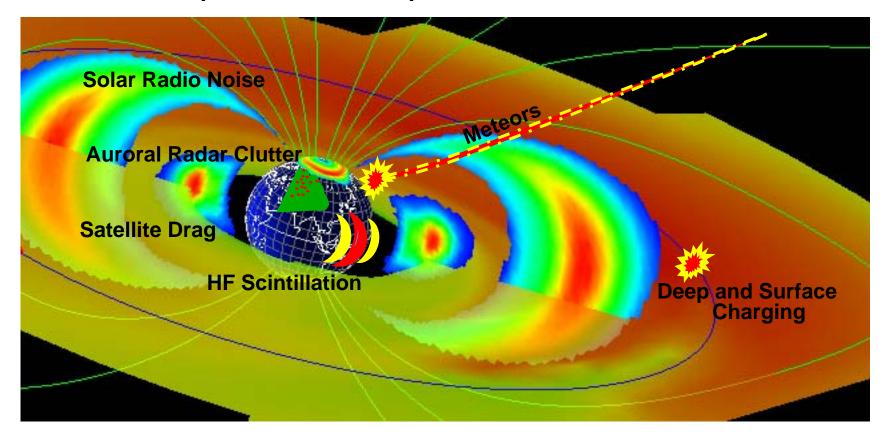
Space weather effects propagate from the Sun on a wide range of time scales



Challenging 72 hr requirement comes from "Air Tasking Order" Soon to be 120 hr

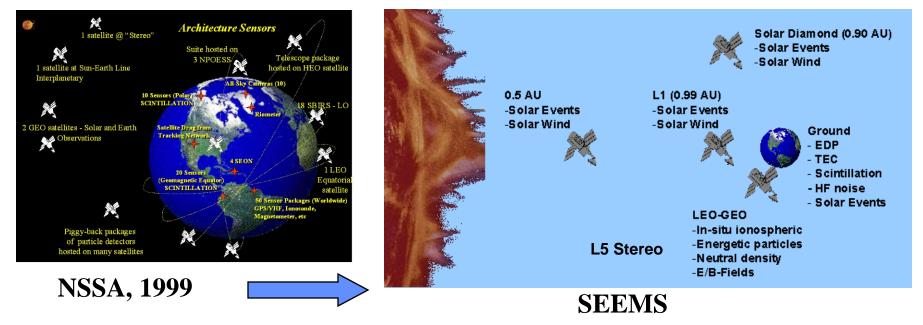
Space Environmental Monitoring & Effects Development Vector

- Advance the national (and world) ability to measure and monitor the space environment from ground-based and spaced-based assets
 (NSSA, SEEMS)
 - Develop physics-based and assimilative models and applications (CISM, GAIM, SEEFS, SWAFS)


Develop mitigation technologies and decision quality impact forecasts for Combatant Commander's Single Integrated Space Picture (SISP, SEEFS)

Goal: Advance capability from specification of the space environment to long term forecasting of effects

SEEFS is a comprehensive tightly coupled system of specification, forecast, and <u>effects</u> models tailored to provide asset specific forecasts of operational SWx impacts


SEEFS is a SMC led effort, executed by AFRL

Space Environmental Effects Monitoring System

- Space- and ground-based sensors required to provide AF with specification and forecast of the space environment and effects on military systems
- Thermosphere to the surface of the sun
- Includes impacts e.g., radio frequency propagation (UHF SATCOM, GPS PNT, radar) and spacecraft (charging, SEE, radiation dose, satellite drag)
- Based on National Security Space Architecture (1999) and the Space Weather Architecture Plan (2000)
- Intended as implementation plan for DoD components, i.e. Leadership

SEEMS is Sensors, Orbits and Satellites

- Models and products are covered in the SSA Environments Effects Fusion System (SEEFS) concept
- SEEFS details are not needed to specify EM architecture
 - Physics understanding is adequate to choose and place sensors
 - Impact of modern assimilative models is implicit and important
- Three spirals provide sequentially longer and/or better forecasts up to 72 (120) hrs

Sensor groups

- Ground based sensors
 - Solar, ionosphere, thermosphere
- Equatorial and Polar SWx LEO sats
- MEO-GEO sensors, rides of opportunity
- SolGuard: near-Earth solar and solar wind sats
 - L1 (0.99 AU, solar, P&F)
 - Space Weather Diamond (0.9 AU, P&F)
 - L5 Stereo (solar, P&F)
- Solar Sentry: solar wind at 0.5 AU
 - P&F compliment to NASA Sentinels

- The current method of acquiring operational space weather systems is too cumbersome and expensive to allow AF to take a <u>leadership</u> role in building a SWx architecture
- Cost is driven by operational requirements, not all of which pertain to the space environment
- Currently, the value of each piece is based more on the utility of data to the immediate customer base of scientists & forecasters, and less on the utility to operators or warfighters
- Full value is realized only after assimilation into models with data from many other sources, and forecast products delivered to end users
- If adequate data for the products must wait on ponderous acquisitions, SWx sensing platforms will always score low and nothing is ever built

Boost value by costing the entire architecture using an appropriate acquisition paradigm

SEEMS satisfaction of AFSPC 06 SFE MAP requirements

- Requirements are based the requirement to simply specify certain aspects of the current state of the ionosphere
- EM capability prescribed by these requirements does not support forecasting for Space Superiority

Need Number & Name	Current AFSPC 06 Assessment	Spiral 1 (includes current assets)	Spiral 2	Spiral 3
3.3.2.1 Upper Atmosphere	Y	Y	G	G
3.3.2.2 lonosphere	Y	G	G	G
3.3.2.3 Magnetosphere	Y	Y	G	G
3.3.2.4.1 Background Solar Wind	G	G	G	G
3.3.2.4.2 Solar Eruptive Events	G	G	G	G
3.3.2.4.3 Solar EM Spectra	G	G	G	G

Yellow/medium (34-67%), green/high (68-100%)

AFSPC Functional Concept for Space Superiority Operations

- AFSPCSSCC 1.1.6.7.1: Assess and forecast natural space environmental events and the impacts
- EM community interpretation of 72 hr forecast requirement
- EM-TPIPT interpretation of SEEFS needs

Environmental domain or phenomena	Current Capabilities	Spiral 1 (includes current assets)	Spiral 2	Spiral 3
Upper Atmosphere	R	Y	G	G
lonosphere	Y	Y	Y	G
Magnetosphere	R	R	Y	G
Background Solar Wind	Y	Y	Y	G
Solar Eruptive Events	Y	Y	G	G
Solar EM Spectra	G	G	G	G

Yellow/medium (34-67%), green/high (68-100%)

SEEMS Functional **Breakdown**

SEEMS is broken into 2 functional areas

- SEEMS-RF: specify and forecast impacts on RF based systems
- SEEMS-SC: specify and forecast impacts on Space assets
- SEEFS is not included in SEEMS breakdown, but does play a critical role in turning data into products

		SEEMS		
		SEEMS-RF	SEEMS-SC	
		(Radar, Comm, PNT,	(S/C charging, HRE, SEE,	
		EO ISR)	dose, drag)	
		▲	↑	
		TEC, scintillation,		
		EDP, in situ plasma,	GEO-MEO-LEO particle flux	
		solar RF obs, HF	& spectra (KeV-MeV),	
Nowcast	data	Noise	sat tracking, F10.7(drag)	
Nowcast				
	ground support	15 min latency	15 min latency	
		Assimilative,		
	models	climatological	Assimilative, climatological	
			L1 solar wind pressure &	
	data	E-field, neutral wind	mag field	
Short-Term				
Forecast	ground support		30 min latency	
		Climatological,	Climatological, physics-	
	models	physics-based	based	
		Magnetosphere, solar	0.9 AU solar wind obs,	
	data	wind, IMF	CME tracking	
Mid-Term				
Forecast	ground support		<u>60 min latency</u>	
		Physics-based,		
	models	coupled	Physics-based, coupled	
	data	0.5 AU solar eruptive obs, CME imaging & tracking		
Long-Term				
Forecast	ground support			
	models	Coupled		

SEEMS Roadmap

FY12 FY13 FY14 FY15 FY16 FY17 FY18 FY19 FY20 FY21 FY22 FY23 FY24 FY25 FY26 FY27 FY28 FY29 **FY07** FY08 FY09 FY10 FY11 FOC **Existing Ground Systems Sustainment** IOC/FOC Spilral #1 **CNOF (ACTD)** ATP IOC/FOC PECOS (2EQ/1PO) Replenishment Replenishment Sponsored instruments on rides of opportunity **CEASE II, etc CEASE III, etc CEASE IV, etc CEASE V, etc CEASE VI, etc** Spiral #2 L1+S SD ΑΤΡ SD L1+S L1+S SD SOLGUARD (L1 + Stereo + Solar Diamond) Replenishment Replenishment Spiral #3 Solar Sentry (10) **SS Replenishment**

- Staged by cost, TRL, and progression from Nowcast to Forecast
- Cost: < 2B\$

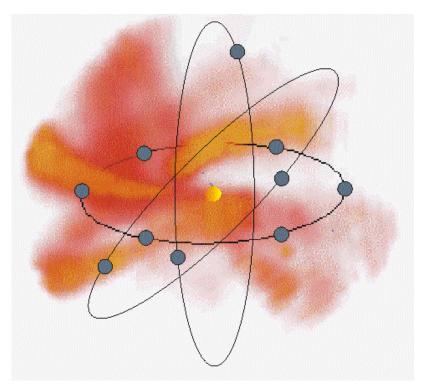
SYSTEM	Description	ORBIT	IOC
Spiral 1			
Next Gen Ionosonde	Automated Iono Profile	na	FY07
TEC Stations	TEC from AF and non-AF stations	na	FY06
SCINDA	RF effects, lonospheric turbulence	na	FY07
SRBL	Solar Radio Bursts		
ISOON	Solar Activite Regions	na	
C/NOFS Resid Ops	lono In Situ (Neu & Ion Den & Wind, E&B, GPS Occult, RF Beacons)	LEO	FY06
PECOS	Operational C/NOFS	(1) Eq. and (2)Polar	FY14
CEASE	Hosted SWx sensors	MEO and GEO	FY06

SEEMS does not include the models, but they play a key role in enabling data assimilation, forecasting, and effects prediction

The models need SEEMS

SEEFS	Sys Impacts, Ground to GEO	FY10
GAIM	lono assimilation	FY08
TBD	Global assimilation	FY 12

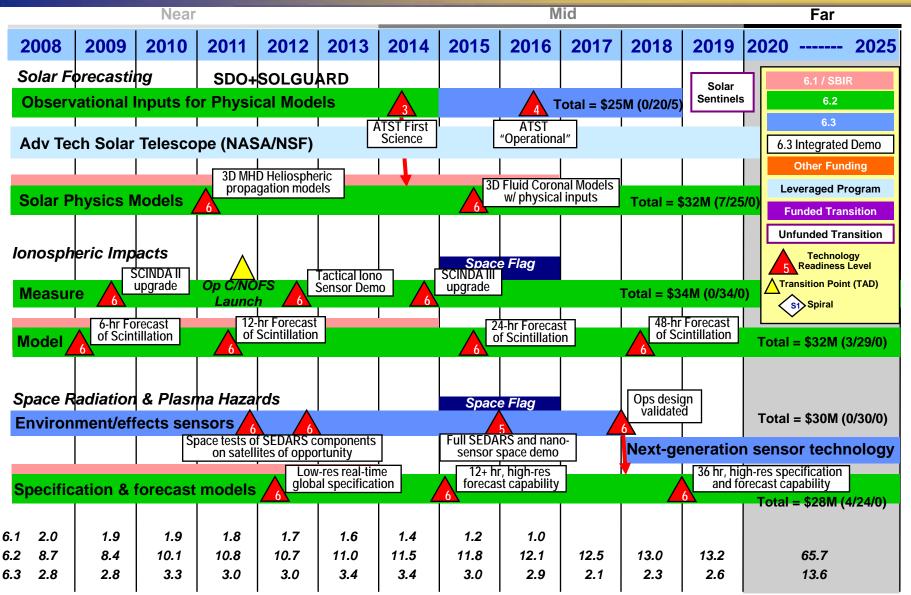
- Provide a comprehensive Solar and Solar Wind data stream to enable accurate and predictive models
 - 4 to 12 hr forecasting of impending Solar Wind conditions
 - Stereo coronal observations enable multi-day forecasts of likely Solar Wind and RF conditions
- Cost: < 3.5B\$ including replentishment


SPIRAL 2			
SYSTEM	Description	ORBIT	IOC
SolGuard	Coronal observation, CME & Solar Wind	L1 + Stereo(1)	FY14
SolGuard	CME + Solar Wind	0.9 AU Space Diamond (4)	FY14

• Space Weather Diamond. Four satellites in 1.1 x 0.9 AU eccentric orbits effectively circling the Earth (O.C.St.Cyr et.al., JASTP, V62.No14, 2000)

- Spiral 3 = Solar Sentry (~= Solar Sentinels, NASA)
- 10 DoD micro-satellites plus 4 NASA satellites in 0.4 to 0.6 AU Solar orbits
- Optimal upstream in situ Solar Wind observation
- Shared satellite bus and payload with SolGuard spacecraft
- Particle and Field sensors only
- Cost: < 3 B\$ for 10 sats and replentisment
- Partnership with NASA, NOAA, and foreign programs will extend coverage and reduce costs

The space environment is a highly coupled system where a forecast for one region often requires data from all over the earth-solar space


- Assimilative models are adaptive to the add/loss of any one data set
- In most cases, warfighters do not directly use satellite environmental data but depend on model assessments and decision aids
- Thus, the effectiveness of these new assimilative models is limited more by data quantity than by data quality (degree of reliability)
- SEEMS must be a Responsive Space Weather Program with a dedicated program office with the authority and budget to build SEEMS
- Single SPO for multiple and dissimilar missions
- Baselined on mature technology, tech infusion only as ready
- Trade data assurance and associated costs for increased quantity of data
- Operational use of prototype and research class assets, e.g. ACE, SOHO, C/NOFS
- Responsive partnering e.g. STEREO, SWARM

The proposed acquisition concept will enable the AF and DoD to take a leadership role in achieving an effective space weather architecture

AFRL Programs in SWx 8. 72 Hour Forecasts

