
Final Report
Anomaly Detection At Multiple Scales (ADAMS)

Sponsored by the
Defense Advanced Research Projects Agency (DOD) 1

Issued by
U.S. Army Aviation and Missile Command Under

Contract No. W31PQ-ll-C-0229
November 9, 2011

Name of Contractor: Allure Security Technology Inc.
Principal Investigator: Hugh Thompson
Business Address: 5 Penn Plaza, 23rd Floor, New York, NY 10001-1810
Phone: 201-444-6944

Effective Date of Contract : April 14, 2011
Short Title of Work: ADAMS Behavioral Sensors

Contract Expiration Date: December 31 , 2013
Report ing Period: April 14, 2011 - October 13, 2011

Approved for public release; distribution unlimited.

CAGE Code: 5KE34
Issue by DODACC: W31P4Q
Admin by DODAAC: S3309A
Acceptor DODACC: W90BWX
Service Approver: W90BWX

DARPA Program Manager: Rand Waltzman, Rand.Waltzman@darpa. mil

1 The views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either express or implied , of
the Defense Advanced Research Project Agency or the U.S. Government .

1

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions. searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of th is collection
of information, including suggestions for reducing th is burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204. Arlington, VA 22202-4302 , and to the Office of Management and Budget.
Paperwork Reduction Project (0704~188) Washington, DC 20503.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (00-MM-YYYY) 12. REPORT TYPE 3. DATES COVERED (From- To)
10-11 -2011 Final Project Report 14-04-2011 -13-10-2011

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER
ADAMS Behavioral Sensors W31 PQ-11-C-0229

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER
ARPA Order BK21-00

6. AUTHOR(S) 5d. PROJECT NUMBER
Hugh Thompson
Salvatore J . Stolfo
Angelos D. Keromytis 5e. TASK NUMBER

Shlomo Hershkop

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Allure Security Technology Inc REPORT NUMBER

5 Penn Plaza CLIN 0001AA
23rd Floor
New York, NY 10001 -1810

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S
Defense Advanced Research Projects Agency (DOD) ACRONYM(S)

110 DARPA 110
11. SPONSORING/MONITORING

AGENCY REPORT NUMBER

12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The recent disclosure of sensitive and classified government documents through Wikileaks demonstrates a new
systemic threat, exfiltration and broad global broadcast of government confidential data and information. Allure Security
Technology Inc., a Columbia University spinout company, is developing techniques and mechanisms to identify likely
malicious insiders by leveraging automatically generated misinformation and system and network monitoring
technolog ies such as Data Leak Prevention (DLP). We are developing a baseline system that will demonstrate the
feasibility of identifying specific types of insiders by developing a prototype for automatically generating and distributing
believable misinformation based upon operator-defined templates, and then tracking access and attempted misuse of it.
We call this "d isinformation technology", FOG computing.

15. SUBJECT TERMS
Anomaly Detection at Scale, Behavioral Sensors, FOG Computing .

16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER
OF ABSTRACT OF PAGES

• · REPORT lb. ABSTRACT I c. THIS PAGE

198. NAME OF RESPONSIBLE PERSON
Hugh Thompson

111b. TELEPONE NUMBER (fncfwtf• .,.,. cod'•}
201-444-6944

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI -Std Z39-18

Contents

1 Introduction
1.1 Pointers to Phase I Task Deliverables

2 System Architecture and Design
2.1 Related Work
2.2 Threat Model

3 Decoy Document Properties
3.1 Decoy Document Design . .

3.1.1 Honeytokens
3.1.2 Beacon Implementation
3.1.3 Embedded Marker implementation

4 Host-based Sensors

4
4

5
9

11

13
19
20
21
21

23
4.1 Detecting Perfectly Believable Decoys 24

5 Search Behavior Modeling
5.1 Data and Evaluation

27
. 29

6 Source Code Decoys 31
6.1 Software Decoy Generator Architecture 32
6.2 Analyzing Source Code 33
6.3 Obfuscating Source Code 34
6.4 Generating Bogus Programs with Beacons encapsulated in a

project . 39

7 Application Server
7.1 Requirements .
7.2 Scale-ability ..
7.3 Customization .
7.4 Administration
7.5 Upgrading . . .
7.6 Debugging Problems
7.7 Past Known issues .

3

42
43
43
43
44
44
44
44

8 System Front End
8.1 Web-based GUI
8. 2 Accounting system

8.2. 1 Account Creation and Registration
8. 2.2 Account Roles .
8. 2.3 Account Status

8.3 Setting Customization

9 Database Backend
9.1 Failover Redundancy
9. 2 Tools
9.3 Maintenance tools for DB
9.4 Table Schemas

10 Logging infrastructure
10.1 System Logging
10.2 Usage Logging
10.3 Decoy Logging
10.4 Backup and Restore

11 Decoy System
11.1 Decoy Mechanisms
11.2 Beacon Notification System . .

11 .2 .1 Remote image references
11.2.2 Tiny URL
11.2.3 Remote URL touches .
11.2.4 SIP phone number ..
11.2.5 DNS
11.2. 6 Honeypot and server log in information .
11.2.7 Monitored Credit Cards

12 Document Generation System
12. 1 Archi tecture Overview

12. 1.1 Decoy System
12.1.2 Document Template Module
12. 1.3 Template Variations

12. 2 Content Generation From Templates

4

45
45
45
45
46
46
47

48
50
50
50
51

56
56
56
57
57

58
58
58
59
59
59
60
60

60
61

62
62
62
62
63
63

13 API
13.1 Single Requests
13.2 Batch Documents Creation .
13.3 Future Additions

14 Deployment Guide
14.1 Obtaining the latest software
14.2 Installation Requirements
14.3 SSL Support .. .
14.4 Sample Install
14.5 Test The System

14.5.1 Registration Testing
14.5.2 Verify account
14.5.3 Document Creation .
14.5.4 Decoy pings

5

65
65
66
66

67
67
67
67
68
68
68
69
69
69

1 Introduction

This is the design documents for the Allure Defender system. This document
is a high level design and API of the components that make up the Allure
Defender system. We outline all the high-level pieces and then the individual
components, their behaviors , expected input/outputs, and relationships. We
will discuss specific implementation and design choices and languages and
libraries that will be used . In addition we will cover specific user cases and
illistrate some running examples. Last we refer to a running system which
impliments many of the components we cover in the document.

The goal of the document is for a designer to create a working system
and or verify a working system conforms to the specifications outlined in the
document.

1.1 Pointers to Phase I Task Deliverables

We point to the various sections of the document that describe the work we
have clone as part of our Phase I effort .

• Task 1: Conduct research on characteristics of Document-based Be­
havioral Sensors (DBS): Sections 2 and 3.

• Task 2: Document generation engine design: Sections 2 and ?? to 14
(inclusive).

• Task 3: Per-document type feasibility analysis: Sections 3, 11 and 12.

• Task 4: Source code plug-in design: Section 6.

• Task 5: Beacon analysis: Sections 3 and 11 and .

• Task 6: Beacon generator and sensor design: Sections 11 and 12.

• Task 7: Search behavior modeling for host-based sensor design: Sec­
tion 5.

• Task 8: Host-based sensor design: Section 4.

• Final Deliverable: this whole document.

6

2 System Architecture and Design

The purpose of Allure Defender is to create behavioral sensors that can be
used to detect the presence (and possibly other attributes) of a malicious,
stealthy (and possibly "insider") adversary. The behavioral sensors used in
the first version of Allure Defender will consist of enticing documents, com­
bined with a number of detection techniques. Thus, at a very high level, the
system is divided into two components : document generation and misbehav­
ior detection.

The document generation component will create documents (hence­
forth referred to as Decoy Documents, or DD for short) in various formats
(e.g., Word , Excel, PDF, Powerpoint, email messages, Instant Messaging
logs, ...) t hat contain one of several features :

• a "mark" allowing Allure Defender to determine whether a file is a DD,
and possibly allow legit imate users to avoid accessing/triggering the
DD;

• one or more "beacons", which will cause the application processing the
DD to emit some sort of discernible signal;

• Enticing Information (henceforth referred to as EI) which, if acted upon
by the adversary, will allow detection. Such information includes URLs
(for various protocols), account information (e.g., username/password),
and others that may be developed in the future; and

• Ent icing Content (henceforth referred to as EC) that will attract t he
adversary to the DD (e.g., if they are using a search function) without
raising suspicion, will support the presence of the EI in the document,
and will allow the DDs to "fi t in" wi th the rest of the environment on
which t hey have been deployed.

DDs may be deployed on servers, databases, user desktops and laptop,
mobile devices, honeypots, or other locations. It is desirable t hat all of t hese
seeding techniques be supported.

The EC may be generated based on templates, synthesized from private
sources (e.g., by mining existing documents at the directory /account/system/server
to be seeded), synthesized from public sources (e.g., documents acquired
through search engines) based on high-level templates, or synthesized from

7

Figure 1: High Level Architecture

public sources using information mined from existing documents at the di­
rectory/account/system/server to be seeded. Any combination of these tech­
niques may be used to generate DDs, and a specific DD may be t he result of
several such techniques being used simultaneously.

The misbehavior detection component consists of a variety of subcompo­
nents, some of which are specific to the beacon techniques used:

• honeypot servers, pointed to by URLs and similar information;

• intrusion detection systems combined with legitimate servers/services,
when the lat ter can be used for detection purposes wi thout compro­
mising primary functionality (e.g., invalid usernamejpassword login
attempts, specific directories in a filesystem or web server hierarchy,
DNS server queries, and so on) ;

• Data Leakage Prevent ion (DLP) subsystems, which may operate at
various points in the system, e.g. , network, filesystem, memory, and
others. The DLP may be a priori aware of the ident ity and location of
the DDs, or it may be able to identify them on the fly via the "mark".

The design of the architecture (see Figure 1) attempts to cleanly divide
the functionality of the different subsystems into self-managing components
allowing maximum flexibility of the system to adopt to changes while allowing
all the components to seamlessly work together. The design reflects the

8

Decoy
Generation

Figure 2: Component Architecture

facts that (a) documents may be requested via different interfaces (e.g., web­
server front-end , client-side logic interacting over the network , client-side
application wit h generation library, and possibly others); (b) the documents
may contain a combination of enticing information, marks and beacons, based
on the desired configuration, (c) the corresponding detection capabilities can
vary (and should be extensible so that we can add further capabilit ies as
fu ture research directs), and (d) the documents, and specifically the ent icing
content , may be generated through a variety of means. Examples of the
latter include:

• Template-based documents, with "fill-in the blanks" generation based
on random (but realistic) information.

• As above (template-based generation), but the inserted information
may be retrieved from the organization's own information (e.g., em­
ployee directory), from the user machines (e.g., based on information
gleaned from email records or from other - possibly similar - files on
the machines where the documents will be deployed on) , from social
network public data, etc.

9

• As above (template-based generation with personalized inserted infor­
mation), where the templates are directly derived from suitable existing
documents in the organization or user machine where the DDs will be
deployed (e.g., files which already contain username/password combi­
nations, which can be modified).

• As above, where the templates are abstracted from suitable existing
documents, e.g., by copying the structure of existing documents and
inserting text (either automatically generated or retrieved from pub­
lic or private/organizational sources) that shares keywords with the
corresponding text in the original document.

• As above, where the structure is a combination of the structure of
similar-but-not-identical documents that already exist in the target en­
vironment .

• As above, where the templates are abstracted from suitable existing
documents by copying only their structure, but the text can be based
on independently produced (e.g., configuration-derived) keywords.

We envision a simple system at first (template-based), with more powerful
capabilities integrated over time. Figure 2 shows our component architecture
at a greater level of detail. The various elements shown there include:

• Webserver: software platform running the system;

• Frontend Interface: forward-facing GUI for accounts, documents, and
maintainance/ administration;

• Backend Database: database system which stores/retrieves user , decoy
activities;

• Document Generation: system for creating and managing the decoy
documents;

• Decoy generation: technology for creating decoys which can be tracked;

• Content System: set of technologies for managing and manipulating
believable content to make the documents enticing;

• Simulated Users: the component handling a collection of decoy users for
use in document system (to create a timeline of documents/interactions) ;

10

• Marker Generation: the creation of markers, inserted into decoy docu­
ments, that can be tracked by DLP or other host-based sensors;

• Template System: the store of decoy templates, from which decoy doc­
uments are generated;

• Beacon Manager: the system component that detects events triggered
by document beacons;

• Logging System: the component the detects the attempted use of en­
ticing information, and which may be subdivided into multiple sub­
components and distributed across the organization and outside re­
sources;

• Alert System: the component responsible for notifying users and/ or
administrators about beacon, marker and EI events.

We begin by discussing the high-level properties of decoy documents and
beacons. We then discuss our system design in more detail. But first , we
will give a brief overview of related work in this space and our threat model.

2.1 Related Work

The use of deception, or decoys, plays a valuable role in the protection of
systems, networks, and information. The first use of decoys (i.e. , in the
cyber domain) has been credited to Cliff Stoll [31, 24] and detailed in his
novel "The Cuckoos Egg" [25], where he provides a thorough account of his
crusade to catch German hackers breaking into Lawrence Berkeley Labora­
tory computer systems. Stoll's methods included the use of bogus networks ,
systems, and documents to gather intelligence on the German attackers who
were apparently seeking state secrets. Among the many techniques waged,
he crafted "bait" files, or in his case, bogus classified documents that really
contained non-sensitive government information and attached "alarms" to
them so that he would know if anyone accessed at them. To Stoll's credit,
a German hacker was eventually caught and it was found that he had been
selling secrets to the KGB.

Deception-based information resources that have no production value
other than to attract and detect adversaries (like those used by Stoll) are
commonly known as Honeypots [11]. Honeypots serve as effective tools for

11

profiling attacker behavior and to gather intelligence to understand how at­
tackers operate. Honeypots are considered to have low false positive rates
since they are designed to capture only malicious attackers, except for per­
haps an occasional mistake by innocent users. Spitzner described how honey­
pots can be useful for detecting insider attack [23], in addition to the common
external threats for which they are traditionally known. He discusses the use
of honeytokens, which he defines as "a honeypot that is not a computer" [24],
citing examples that include bogus medical records, credit card numbers, and
credentials, with descriptions of how they can be used to detect malicious
insiders [23, 24]. In a similar spirit, Webb et al. [28] showed how honeypots
can be useful for detecting spammers. Although spam is not the focus of this
work, their deceptive approach to detecting it may be applicable. In current
systems, the decoy /honeytoken creation is a laborious and manual process
requiring large amounts of administrator intervention. In contrast, we pro­
pose the seeding of decoy information (of various different types) throughout
an operational system. Our work extends these basic ideas to an automated
system of managing the creation and deployment of these honeytokens.

Yuill et al. [31] extend the notion of honeytokens with a "honeyfile sys­
tem" to support the creation of bait files, or as they define them, "honeyfiles."
The honeyfile system is implemented as an enhancement to the Network File
Server. The system allows for any file within user file space to become a
honeyfile through the creation of a record associating a filename to userid.
The honeyfile system monitors all file access on the server and alerts users
when honeyfiles have been accessed. Their work does not focus on the con­
tent or automatic creation of files, but they do elicit some of the challenges
of creating deceptive files (with respect to names) that we address.

We introduce a set of properties of decoys to guide their design and max­
imize the deception they induce for different classes of insiders who vary by
their level of knowledge and sophistication. To the best of our knowledge, the
synthesis of these properties is indeed novel a contribution. Bell and Whaley
[2] have described the structure of deception as a process of hiding the real
and showing showing the false. They introduce several methods of hiding
that include masking, repackaging, and dazzling, along with three methods
of showing that include mimicking, inventing, and decoying. Yuill et al. [30]
expand upon this work and characterize deceptive hiding in terms of how it
defeats an adversary's discovery process. They describe an adversary's dis­
covery process as taking three forms: direct observation, investigation based
on evidence, and learning from other people or agents . Their work offers a

12

process model for creating deceptive hiding techniques based on how they
defeat an adversary's discovery process.

The decoy documents we introduce utilize similar deception mechanisms
as well as beacons to signal a remote detect and alert in real-time time
when a decoy has been opened. Web bugs are a class of silent embedded
tokens which have been used to track usage habits of web or email users [1 8].
Unfortunately, they have been most closely associated with unscrupulous
operators, such as spammers, virus writers, and spyware authors who have
used them to violate users privacy. Typically they will be embedded in the
HTML portion of an email message as a non-visible white on white image,
but they have also been demonstrated in other forms such as Microsoft Word,
Excel, and PowerPoint documents [21]. When rendered as HTML, a web bug
triggers a server update which allows the sender to note when and where the
web bug was viewed. Animated images allow the senders to monitor how
long the message was displayed. The web bugs operate without alerting the
user of the tracking mechanisms. The advantage for legitimate advertisers is
that this allows them to monitor advertisement effectiveness, while privacy
advocates worry that this technology can be misused to spy on users' habits.
Our work leverages the same ideas, but extends them to other document
classes and is more sophisticated in the methods used to draw attention. In
addition, our targets are insiders who should have no expectation of privacy
on a system they violate.

2.2 Threat Model

The insider seeks to identify and avoid the decoys and abscond with "real"
information. We broadly define four monotonically increasing levels of insider
sophistication and capability. Some will have tools available to assist in
deciding what is a decoy and what is real. Others will only have their own
observations and thoughts.

• Low: Direct observation is the only tool available. The adversary
largely depends on what can be gleaned from a first glance. We strive to
defeat this level of adversary with our beacon documents, even though
decoys with embedded beacons may be distinguished with more ad­
vanced tools.

• Medium: A more thorough investigation can be per- formed by the
insider; decisions based on other, possibly outside evidence, can be

13

made. For example, if a decoy document contains a decoy account
credential for a particular identity, an adversary may verify that the
particular identity is real or not by querying an external system (such
as www.whitepages.com). Such adversaries will require stronger decoy
information possibly corroborated by other sources of evidence.

• High: Access to the most sophisticated tools are available to the at­
tacker (e.g., super computers, other informed people who have organi­
zational information). The notion of the "Perfect Decoy" described in
the next section may be the only indiscernible decoy by an adversary
of such caliber.

• Highly Privileged: Probably the most dangerous of all is the priv­
ileged and highly sophisticated user. Such attackers might even be
aware that the system is baited and will employ sophisticated tools to
try to analyze, disable, and avoid decoys entirely. As an example of
how defeating this level of threat might be possible, consider the anal­
ogy with someone who knows encryption is used (and which encryption
algorithm is used), but still cannot break the system because they do
not have knowledge of an easy-to-change operational parameter (the
key). Likewise, just because someone knows that decoys are used in
the system does not mean they should be able to identify them. This
is the principal- coming up with a scheme to satisfy it remains an open
problem.

14

3 Decoy Document Properties

We enumerate various properties and means of measuring t hese properties
that are associated with decoy documents to ensure their use will be likely
to snare an inside attacker . We introduce the following notation for t hese
definitions.

Believable1: Capable of eliciting belief or trust; capable of being
believed; appearing true; seeming to be true or authentic.

A good decoy should make it difficult for an adversary to discern whether
they are looking at an authentic document from a legitimate source or if
they are indeed looking at a decoy. We conjecture that believability of any
particular decoy can be measured by adversary's failure to discern one from
the other. We formalize this by defining a decoy believability experiment .
The experiment is defined for the document space M with the set of decoys
D such that D ~ Jl.;f and M - D is the set of authentic documents .

The Decoy Believability Experiment: Expt;{,1J5,~

• For any dE D, choose two documents m 0 , m 1 E M such that m 0 = d
or m 1 = d, and m 0 =/= m 1; that is , one is a decoy we wish to measure
the believability of and the second is chosen at random from the set of
authentic documents.

• Adversary A obtains m 0 , m 1 and attempts to choose m E {m0 , mt}
such t hat m =!= d, using only information intrinsic to m 0 , m 1 .

• The output of the experiment is 1 if m =!= d and 0 otherwise.

For concreteness, we build upon the definition of "Perfect Secrecy" proposed
in the cryptography community [13] and define a "perfect decoy" when:

Pr[Exp~1~% = 1] = 1/2 , ,

1 For clarity, each property is provided with its definition gleaned from online dictionary
sources.

15

The decoy is chosen in a believability experiment with a probability of 1/2
(the outcome that would be achieved if the volunteer decided completely at
random) . That is, a perfect decoy is one that is completely indistinguishable
from one that is not. A benefit of this definition is that the challenge of
showing a decoy to be believable, or not, reduces to the problem of creating
a "distinguisher" that can decide with probability better than 1/2.

In practice, the construction of a "perfect decoy" might be unachievable,
especially through automatic means, but the notion remains important as it
provides a goal to strive for in our design and implementation of systems.
For many threat models, it might suffice to have less than perfect believ­
able decoys. For our proof-of-concept system described below, we generate
receipts and tax documents, and other common form-based documents with
decoy credentials, realistic names , addresses and logins, all information that
is familiar to all users .

We note that the believable property of a decoy may be less important
than other properties defined below since the attacker may have to open
the decoy in order to decide whether the document is real or not. The
act of opening the document may be all that we need to trap the insider ,
irrespective of the believability of its content. Hence, enticing an attacker
to open a document , say one with a very interesting name, may be a more
effective strategy to detect an inside attack than producing a decoy document
with believable content.

Enticing: highly attractive and able to arouse hope or desire; "an
alluring prospect"; lure.

Herein lies the issue of how does one measure the extent to which a decoy
arouses desires, how well is it a lure? One obvious way is to create decoys
containing information with monetary value , such as passwords or credit card
numbers that have black market value [15, 26]. However, enticement depends
upon the attacker's intent or preference. We define enticing documents in
terms of the likelihood of an adversary's preference; enticing decoys are those
decoys that are chosen with the same likelihood. More formally, for the docu­
ment space M, let P be the set of documents of an adversary's A preference,
where P ~ M. For some value t such that t > 1/IMI, an enticing document
is defined by the probability

Pr[m ---+ Mlm E P] > t:

16

where m-----* M denotes m is chosen from M . An enticing decoy is then
defined for the set of decoys D, where D ~ M, such that

Pr[m -----* M lm E P] = Pr[d -----* M id E D]

We posit that by defining several general categories of "things" that are
of "attacker interest", one may compose decoys using terms or words that
correspond to desires of the attacker that are overwhelmingly ent icing. For
example, if the attacker desires money, any document t hat mentions or de­
scribes information that provides access to money should be highly enticing.
We believe we can measure frequently occurring (search) terms associated
with major categories of interest (e. g., words or terms drawn from finance,
medical info rmation, intellectual property) and use these as the constituent
words in decoy documents . To measure the effectiveness of t his generative
strategy, it should be possible to execute content searches and count the
number of t imes decoys appear in the top 10 list of displayed documents .
This is a reasonable approach also, to measuring how conspicuous, defined
below, the decoys become based upon the at tacker 's searches associated with
their interest and intent.

Conspicuous: easily visible; easily or clearly visible; obvious to
the eye or mind; Attracting attention.

A conspicuous decoy should be easily found or observed. Conspicuous
is defined similar to ent icing, but conspicuous documents are found because
they are easily observed, whereas ent icing documents are chosen because they
are of interest to an attacker . For the document space M, let V be the set
of documents defined by the minimum number of user actions required to
enable their view. We use a subscript to denote the number of user actions
required to view some set of documents. For example, documents that are
in view at logon or on the desktop (requiring zero user actions) are labeled
V0 , those requiring one user action are V1 , etc. We define a "view", Vi of a
set of documents as a function of a number of user actions applied to a prior
view, V'i- 1 , hence

Vi = Action(Vi- d where Vj =I Vi, j < i

An "Action" may be any command or function that displays files and doc­
uments, such as ' ls', 'dir ', 'search.' For some value t: such that t: > 0, a
conspicuous document, d, is defined by the probabili ty

17

n

IT Pr[Vi] > E

i=O

where n is the minimum value where dE Vn. Note if dis on the desktop, Vo,
Pr[Vo] = 1 (i.e., the documents in full view are highly conspicuous).

Detectable; to discover or catch (a person) in the performance of
some act: to detect someone cheating.

Decoys must ensure an alert is generated if they are exploited. Formally,
this is defined for adversary A, document space M, and the set of decoys D
such that D ~ M. We use AlertA,d = 1 to denote an alert for d E D. We
say d is detectable with probability E when

Pr[d-+ M: AlertA,d = 1] 2:: E

Ideally, E should be 1.
We designed the decoy documents with several techniques to provide a

good chance of detecting the malfeasance of an inside attack in real-time.

• At t ime of application start-up, the decoy document emits a beacon
alert to a remote server.

• At the t ime of memory load, a host-sensor, such as an antivirus scanner,
may detect embedded tokens placed in a clandestine location of the
document file format .

• At the time of exfiltration, a NIDS such as Snort, or a stream event
detection system such as Cayuga [5] may be used to detect these em­
bedded tokens during the egress of the decoy document in network
traffic where possible.

• At time of information exploitation and/or credential misuse, monitor­
ing of decoy logins and other credentials embedded in the document
content by external systems will generate an alert that is correlated
with the decoy document in which the credential was placed.

18

This extensive set of monitors maximizes E, forcing the attacker to expend
considerable effort to avoid detection, and hopefully will serve as a deterrent
to reduce internal malfeasance within organizations that deploy such a trap­
based defense. In the proof-of-concept implementation reported in this paper,
we focus our evaluation on the last item. We utilize monitors at our local IT
systems, at Gmail and at an external bank.

Variability: The range of possible outcomes of a given situation;
the quality of being subject to variation.

Attackers are humans with insider knowledge, even possibly with the
knowledge that decoys are liberally spread throughout an enterprise. Their
task is to identify the real documents from the potentially large cache of
decoys. One important property of the set of decoys is that they are not
easily identifiable due to some common invariant information they all share.
A single search or test function would thus easily distinguish the real from
the fake. The decoys thus must be highly varied. We define variable in terms
of the likelihood of being able to decide the believability of a decoy given any
known decoy. Formally, we define perfectly variable for document space M
with the set of decoys D such that D ~ M where

Pr[d'--+ D: Exp~,1l;,~, d' = 1] = 1/2

Observe that under this definition an adversary may have access to all
previously generated decoys with the knowledge they are bogus, but still lack
the ability to discern the N +1st. From a statistical perspective, each decoy
is independent and identically distributed. For the case that an adversary
can determine the N +1st decoy only after observing the N prior decoys, we
define this as an N-strong Variant.

Clearly, a good decoy generator should produce an unbounded collection
of enticing, conspicuous, but distinct and variable documents. They are dis­
tinct with respect to string content. If the same sentence appears in 100
decoys , one would not consider such decoys with repetitive information as
highly variable; the common invariant sentence(s) can be used as a "signa­
ture" to find the decoys, rendering them distinguishable (and clearly, less
enticing).

Non-interference: Something that does not hinder, obstructs, or
impede.

19

Int roducing decoys to an operational system has the potent ial to inter­
fere with normal operations in mult iple ways. Of primary concern is t hat
decoys may pollute authentic data so that their legitimate usage becomes
hindered by corruption or as a result of confusion by legit imate users (i.e. ,
they cannot different iate real from fake) . We define non-interference in terms
of the likelihood of legit imate users successfully accessing normal documents
after decoys are int roduced. We use Accessu,m = 1 to denote the success of a
legit imate user U accessing a normal document m. More formally, for some
value E, the document space M, Vm E M we define

Pr[Accessu,m = 1] ~ E

on a system without decoys. on-interference is then defined for the set of
decoys D such that D ~ M and Vm E M we have

Pr[Accessu,m = 1] = Pr[Accessu,m = liD]

Although we seek to create decoys to ensnare an inside attacker, a le­
git imate user whose data is the subject of an attacker must still be able to
ident ify their own real documents from the planted decoys. The more enticing
or believable a decoy document may be, t he more likely it would be to lead
the user to confuse it with a legit imate document they were looking for. Our
goal is to increase believability, conspicuous, and enticingness while keeping
interference low; ideally a decoy should be completely non-interfering. The
challenge is to devise a simple and easy to use scheme for the user to easily
differentiate their own documents, and thus a measure of interference is then
possible as a by-product.

Differentiable: to mark or show a difference in; constitute a
difference that distinguishes; to develop differential characteristics
in; to cause differentiation of in the course of development.

It is important that decoys be "obvious" to the legitimate user to avoid
interference, but "unobvious" to the insider stealing information. We define
this in terms of an inverted believability experiment, in which the adversary is
replaced by a legitimate user. We say a decoy is differentiable if the legitimate
user always succeeds. Formally, we state this for the document space M with
the set of decoys D such that D ~ M where

Pr[Exp~~~~ = 1] = 1

20

How might we easily differentiate a decoy for the legitimate user so that
we maintain "non-interference" with the user's own actions and legitimate
work? The remote thief who exfiltrates all of a user's files onto a remote
hard drive may be perplexed by having hundreds of decoys amidst a few
real documents; the thief should not be able to easily differentiate between
the two cases. If we store a hundred decoys for each real document, the
thief's task is daunting; they would need to test embedded information in the
documents to decide what is real and what is not, which should complicate
their end goals. For clarity, decoys should be easily differentiable to the
legitimate user, but not to the attacker without significant effort. Thus, the
use of "beacons" or other embedded content in the binary file format of a
document, must be judiciously designed and deployed to avoid making decoys
trivially differentiable for the attacker.

3.1 D ecoy Document Design

The primary goal of the trap based defense is to detect malfeasance. Since no
system is foolproof, we propose that multiple overlapping signals be embed­
ded in the decoy documents to ensure detectability. Any alert generated by
the multiple decoys is an indicator that some insider activity has occurred .
Since the attacker may have varying levels of sophistication, a combination of
traps are used in decoy documents to increase the likelihood one will succeed
in generating an alert. A sophisticated attacker may, for example, disable
the internal beacon, or cut off network connections avoiding communication,
disable or kill local host monitoring processes, or they may exfiltrate docu­
ments via a web-browser without opening them locally. The documents are
designed with several means of detecting their misuse:

• embedded honeytokens, computer login accounts created that provide
no access to valuable resources , and that are monitored when (mis)used;

• embedded honeytoken banking login accounts specifically created and
monitored for this trap-based technology demonstration specifically to
entice financially motivated attackers;

• a network-level egress monitor that alerts whenever a marker, specially
planted in the decoy document, is detected. Presently Snort may be
used as simple signature detector as a proof-of-concept;

21

• a host-based monitor that alerts whenever a decoy document is "touched"
in the file system such as a copy operation;

• an embedded "beacon" alerts a remote server. The web site emits an
email to the registered user who created and downloaded the decoy
document.

The implementation of features are described below.

3.1.1 Honeytokens

This layer of defense is made up of "bait" information such as online banking
logins provided by a collaborating financial institution, credit card numbers,
login accounts for online servers, and web based email accounts. The primary
requirement for bait is that it be detectable when (mis)used. For example,
one form of bait that we use are usernames and passwords for Gmail accounts.
Our system is integrated with a variety of services to enable monitoring of
these credentials once they are deployed as decoys. In the case of the Gmail
accounts, custom scripts access mail. google. com to parse the bait account
pages, gathering account activity information. The information includes the
IP addresses for the previous 5 account accesses and the time. If there
is any activity from IP addresses other than our system monitor, an alert
is triggered with the time and IP of the offending host. Alerts are also
triggered when the monitor cannot login to the bait account. In this case, we
conclude that the account password was stolen (unless monitoring resumes)
and the password changed unless other corroborating information (like a
network outage) can be used to convince otherwise. In addition, some of
our accounts have password monitors, allowing us to produce a seemingly
unbounded collection of decoy variants for individual usernames.

In the case of financially motivated bait, we are beginning to use real
credit card numbers in addition to banking login credentials. Many credit
card providers offer "one-time-credit-card numbers" and other forms of Con­
trolled Payment Numbers [19], which enable the generation of multiple credit
card numbers for a single account. In the case of PayPal, single use credit
card numbers can be generated with a predetermined balance. Our system
monitor is being integrated with the PayPal APis to automatically monitor
the activity of the credit card numbers deployed through us. As is the case
for all of the decoys, the benefit of deployment through our system is the
automation, enabling their creation, monitoring, and distribution en masse.

22

3.1.2 Beacon Implementation

The highly sophisticated attacker will likely attempt to differentiate between
a real document and a decoy by analyzing the binary file format prior to
opening a file. This necessitates a design where beacon code and watermarks
in decoy documents are hidden to avoid their easy identification. The at­
tacker would surely avoid the decoys if they could easily identify them by
a simple static test for an embedded beacon. The beacon code can be em­
bedded in documents in a number of ways and made to appear statistically
equivalent to its surrounding data using a blending technique called "spec­
trum shaping" (see [22, 6]). Such obfuscation techniques are very hard to
defeat [16].

Using common techniques developed for malware, beacons attempt to
silently contact a centralized server with a unique token embedded within
the document at creation time. The token is used to identify the decoy
and document, the IP address of the host accessing the decoy document .
Depending on the particular document type and the rendering environment
used during viewing of the beacon document, some additional data may be
collected.

The first proof-of-concept beacons have been implemented in MS Word
and PDF and deployed through our web site. In the case of the MS Word
document beacons, the examples rely on a stealthily embedded remote image
that is rendered when the document is opened. The request for the remote
image is a positive indication the document has been opened. In the case
of PDF document beacons, the signaling mechanism relies on the execution
of Javascript within the document. Our web site will include a tutorial
guiding the user on how to generate, download, and enable the decoys ' silent
communication on hosts. It is important to point out that there are methods
for disabling the beacon mechanism.

3.1.3 Embedded Marker implementation

Beacon documents contain embedded markers that a host or network sen­
sor may detect either when documents are loaded in memory or transmitted
in the clear. The markers are constructed as a unique pattern of word to­
kens uniquely tied to the document creator. The sequence of word tokens
is embedded within the beacon document's meta-data area or reformated as
comments within the document format structure. Both locations are ideal

23

for embedding markers since most rendering programs ignore these parts of
the document. The embedded markers can be used in Snort signatures or
with a DLP such as OpenDLP for detecting exfiltration.

24

4 Host-based Sensors

A good decoy should make it difficult for an adversary to discern whether they
are looking at an authentic document from a legitimate source or if they are
looking at a decoy. For concreteness, we build upon the definition of "perfect
secrecy" proposed in the cryptographic community and define a "perfect
decoy" to be a decoy that is completely indistinguishable from one that is
not. One approach we use in creating decoys relies on a document marking
scheme in which all documents contain embedded markings such that decoys
are tagged with HMACs (i.e., a keyed cryptographic hash function) and non­
decoys are tagged with indistinguishable randomness. Here, the challenge
of distinguishing decoys reduces to the problem of distinguishing between
pseudorandom and random numbers, a task proven to be computationally
infeasible under certain assumptions about the pseudorandom generation
process. Hence, we claim these to be examples of perfect decoys and the
only attacker capable of distinguishing them is one with the key, perhaps the
highly privileged insider.

As a prototype perfect decoy implementation, we designed and built a
component for adding HMAC markers into PDF documents. Markers are
added automatically using the iText API, and inserted into the OCProperties
section of the document. The OCProperties section was chosen because
it can be modified on any PDF without impact on how the document is
rendered, and without introduction of visual artifacts. The HMAC value
itself is created using a vector of words extracted from the content of the
PDF. The HMAC key is kept secret and managed by our system, where it is
also associated with a particular registered host. Since the system depends
on all documents being tagged, another component inserts random decoy
markers in non-decoy documents, making them indistinguishable from decoys
without knowledge of the secret key.

One of the key techniques employed by the architecture involves host-level
monitoring of user-initiated events. The host sensor serves two functions.
The sensor is designed to profile a baseline for the normal search behavior of
a user. Subsequent monitoring for abnormal file search behaviors that exhibit
large deviations from this baseline signal a potential insider attack. The host
sensor also detects when decoy documents containing embedded markers are
read, copied, or exfiltrated. The goal of the host-level decoy sensor is to
detect these malicious actions accurately and with negligible performance
overhead . Abnormal user search events that culminate in decoy document

25

access are a cause for concern. A challenge to the user, such as asking one
of a number of personalized questions, may establish whether a masquerade
attack is occurring.

Our prototype sensor has been built for the Windows XP platform and
relies on hooks placed in the Windows ServiceTable. This is a typical ap­
proach used by malicious rootkits; however, in contrast to the traditional
rootkit objective of remaining undetected, the host-level decoy sensor does
not require operational secrecy. Our threat model assumes attackers have
knowledge that a system is being monitored, but they must not know the
identities of the decoys or the key used by the sensor to differentiate them.
Furthermore, the attacker will likely not know the victim user's behavior,
information that is not readily stolen such a credential or a key. Given that
adversaries may be aware of system monitoring, special care must be taken
to prevent the sensor from being subverted or, equally important , to detect
if it is subverted. We have ongoing work aimed at preventing and detect­
ing subversion of the sensor. One strategy involves a means to "monitor
the monitor" to detect if the host sensor is disabled use of tamper-resistant
soft- ware techniques. One possible solution we are investigating relies on
"out-of-the-box" monitoring, in which a virtual machine-based architecture
is used to conduct host-based mon- itoring outside of the host from within
a virtual machine monitor. In an enterprise environment, integration with
a DLP agent component (such as might already exist in the system) would
offer an attractive alternative to using a custom-built sensor.

4.1 Detecting Perfectly Believable Decoys

The second host sensor also detects malicious activity by monitoring user
actions directed at HMAC-embedded decoy documents. Any action directed
toward a decoy is suggestive of malicious activity. When a decoy document is
accessed by any application or process, the host sensor ini tiates a verification
function . The verification function is responsible for differentiating between
decoys and normal documents by computing a decoy HMAC (as described
earlier) for the particular document in question and comparing it to the one
embedded in the OCProperties section of the document. If there is a match,
the document is deemed a decoy and an alert is triggered; otherwise, the
document is deemed normal and no action is taken.

The host sensor performs tasks similar to antivirus programs. In evalu­
ating the performance of the sensor, we would use overhead comparisons of

26

antivirus programs as a benchmark, since the task of comparing an HMAC
code is not substantially different from testing for an embedded virus signa­
ture. Hence, accuracy performance is not revelant for this particular detector.
However, there is a fundamental difference between the task of detecting mal­
ware and that of detecting decoy activity. Antivirus programs are designed
to prevent the execution of and quarantine malicious software whenever any
process is initiated. In decoy detection the objective is merely to trigger an
alert when a decoy file is loaded into memory. Thus, the decoy detection
need not serialize execution; for example, it may be executed asynchronously
(and in parallel by running on multiple cores).

We have tested the prototype decoy host sensor on a Windows XP ma­
chine. A total of 108 decoy PDF documents were embedded in the local file
system. Markers containing randomness in place of HMACs were embed­
ded in another 2,000 normal PDF files on the local system. Any attempt to
load a decoy file in memory was recorded by the sensor including content or
metadata modification, as well as any attempt to print, zip, or unzip the file .

The sensor detects the loading of decoy files in memory with 100% ac­
curacy by validating the HMAC value in the PDF files. However , as we
discovered during our validation tests, decoy tests can be susceptible to non­
negligible false positive rates. The problem encountered in our testing was
created by antivirus scans of the filesystem! The file accesses of the scanning
process that touched a large number of files, resulted in the generation of spu­
rious decoy alerts. Although we are engineering a solution to this particular
problem by ignoring automatic antivirus scans, our test does highlight the
challenges faced by such monitoring systems. There are many applications
on a system that access files indiscriminately for legitimate reasons. Care
must be taken to ensure that only (illicit) human activity triggers alerts.
As a future improvement to the sensor, file touches not triggered by user­
initiated actions, but rather caused by routine processes, such as antivirus
scan- ners or backup processes may be filtered. Nevertheless, this demon­
strates a fundamental design challenge to architect a security system with
potentially interfering competing monitors.

With regard to the resource consumption of the sensor, the components of
the sensor used an average 20 KB of memory during our testing, a negligible
amount. When performing tests such as the zipping or copying of 50 files,
the file access time overhead averaged 1.3 sec on a series of 10 tests, using
files with an average size of 33 KB. The additional access time introduced
by the sensor is unnoticeable when opening or writing document files. Based

27

on these numbers , we assert that our system has a negligible performance
impact to the system and user experience.

28

5 Search Behavior Modeling

The sensor collects low-level data from file accesses, windows registry ac­
cesses, dynamic library loading, and window access events. This allows the
sensor to accurately capture data about specific system and user behavior
over time. For example, we posit that one method to check if an insider has
infiltrated the system is to model "search" behavior as a baseline for normal
behavior. We conjecture that each user searches their own file system in a
unique manner. They may use only a few specific system functions to find
what they are looking for. Furthermore, it is unlikely a masquerader will
have full knowledge of the victim user's file system and hence may search
wider and deeper and in a less targeted manner than would the victim user.
Hence, we believe search behavior is a viable indicator for detecting malicious
intentions. Specific sections of the windows registry, specific DLLs, and spe­
cific programs on the system are involved with system searching applications.
For a given time period (10 seconds in our initial experiments), we model
all search actions of a user. After a baseline model is computed, the sensor
switches to detection mode and alerts if the current search behavior devi­
ates from the user's baseline model. Deviation measurements are made by
examining a combination of the volume and velocity of system events in as­
sociation with other user activities that should add some context to the user
search actions, such as the number of processes being created and destroyed.
Presently, this sensor component is being integrated in the architecture to
function with the host sensor described next that detects decoy document
accesses.

To evaluate this model, we first gathered user-event data to compute the
baseline normal models, as well as data that simulates masquerade attacks.
The dataset, known as the RUU dataset is described in Section 5.1, below.
For the former , we had 34 computer science students install a host sensor
on their personal computers. The sensor monitored all registry-based activ­
ity, process creation and destruction, window GUI access, and DLL libraries
activity. The data gathered consisted of the process name and ID, the pro­
cess path, the parent of the process, the type of process action (e.g., type of
registry access, process creation, process destruction, etc.), the process com­
mand arguments, action flags (success/failure), and registry activity results.
A timestamp was also recorded for each action. The collected data was au­
tomatically uploaded to a server, after the students had the chance to filter
any data that they were not willing to share.

29

To obtain masquerade attack data, we conducted a user study in which
14 students had unlimited access to the same file system for 15 minutes each.
None of the users had prior access to this file system, which was designed to
look very realistic and to include potentially interesting patent applications,
personally identifiable information, as well as account credentials stored in
various files. The students were provided a scenario where they were asked
to perform a specific task, which consisted of finding any data on the file
system that could be used for financial gain.

The features used for modeling were in essence volumetric statistics char­
acterizing search volume and velocity, and describing the overall computer
session in terms of number of processes running, particulalrly the number of
editing applications. A one-class Support Vector Machine (ocSVM) model
was then trained for each user using those features. The same features were
extracted from test data after dividing them into 10-second epochs. The
ocSVM models were tested against these features, and a threshold was used
to determine whether the user activity during the 10-second epochs was nor­
mal or abnormal. If the user activity was performed by the normal user, but
was classified as abnormal by the ocSVM model, a false positive is recorded.
Our results using the collected data and the modeling approach described
above show that, we can detect all masquerader activity with 100% accu­
racy, with a false positive rate of 0.1 %.

Extensive prior work on masquerade attack detection has focused on the
Schonlau dataset for evaluation. The data set served as a common gold
standard for researchers to conduct comparative evaluations of competing
machine learning algorithms. The basic paradigm this work follows is a su­
pervised training methodology where 5000 commands from each user serve
as training data for the users normal behavior model. A classifier or model
for each user is then tested against hold out data not used in training from
the users command dataset but embedded in a random location with another
randomly chosen users data. The performance results reported indicate the
accuracy of the classifiers learned by a particular machine learning algorithm
in identifying foreign commands, those blocks of commands deemed abnor­
mal.

The model we chose to embed in the user search command sensor is dif­
ferent from these prior bag of command oriented models. Our current studies
analyze user command events and the rates at which commands are issued
using the RUU datasets described in the sidebar. Accuracy is estimated
with respect to classification errors measured for each 10 second epoch of user

30

events. Furthermore, whereas the Schonalu data consists of Unix commands,
the RUU datasets contain user events created in a Windows environment.

In order to compare our results with these prior studies, we need to trans­
late the false positive rates in classifying blocks of 100 commands with the
error rate of classifying user commands issued within each standard dura­
tion epoch. Unfortunately, the Schonalu datasets are devoid of times- tamps
and a direct comparison of our modeling technique is not feasible . No one
can accurately determine how long it takes each user in the Schonlau data
to issue 100 commands. If we assume that it takes 20 seconds to issue one
user command on average (a rough estimate from the RUU datasets forcer­
tain periods of time), our experiments show a detection rate of 100% can
be achieved with a false positive rate of 1.4%. This is a 78% improvement
in false positive rate over the best reported classifier in the prior Schonlau
work. Indeed, none of the prior work reports a 100% detection rate at any
reasonable false positive rate. If we assume it takes on average longer than
20 seconds to issue a user command, the results we achieved drops the false
positive rate even further.

The comparison may not be entirely fair since the models and the data are
quite different even though the data are generated by human users. The use
of temporal statistical features from the RUU data set is crucial in modeling
users behavior leading to far more accurate results than blocks of commands.
Furthermore, in our work, we focus on user search events, limiting the amount
of data analyzed and reducing the complexity of the learning task. The RUU
datasets were created and are available to serve as a more up to date and
modern gold standard for other researchers to perform similar studies.

5.1 Data and Evaluation

Research in insider attack is made difficult due to the lack of readily available
insider attackers or a complete set of realistic data they generate. For this
reason, researchers must resort to generating their own data that simulates
insider attacks. The Schonlau dataset is the most widely used for academic
study. It consists of sequences of 15,000 UNIX commands generated by 50
users with different job roles , but the data does not include command argu­
ments or timestamps. The data has been used for comparative evaluations of
different supervised machine learning algorithms. The Schonlau data is not a
"true Masquerade" data set: the data gathered from different users were ran­
domly mixed to simulate a masquerader attack, making the dataset perhaps

31

more suitable for "author ident ification" studies. An alternative approach to
acquire sufficient data for evaluating monitoring and detection techniques is
to devise a process to acquire human user data under normal operation as
well as simulated attack data where "red team" users are tasked to behave
as inside attackers. This type of study is typically subject to Institut ional
Review Board approvals since human subjects are involved. The process is
costly, in time and effort but is sensible and appropriate to protect person­
ally ident ifiable data of individual volunteer subjects. This was the approach
taken by Maloof et al. for evaluating ELICIT. We as well gathered data from
34 users , all CS students at Columbia University, by distributing host sensors
that upload system event data during normal system use. The population of
student volunteers assures us the data they generate is derived from sources
that have a common "role" in the organization, and hence variations in the
user behavior and their data are not at t ributable to different job functions as
is undoubtedly the case with the Schonlau dataset . We have also gathered
data from 14 paid volunteers who emulated masquerade at tacks on equip­
ment provided in our lab. The dataset, which we call the RUU (Are You
You?) data set, is over 8 GBytes and is available to legitimate researchers
for download: http : I /www1. cs. columbia. edu/ids/RUU/data/. The data
collected for each user averages about 5 days of normal system use, ranging
in the extreme between 1 day and 59 days, and an average of more than 1
million records per user. Preliminary results using t his data and the abnor­
mal search benavior sensor described in the article show that t he red team
of masqueraders deviate substant ially from ordinary system users.

32

6 Source Code Decoys

A software decoy system should have similar properties to those proposed
for document-based decoys. Software decoys system should be inherently
enticing. The decoy system must detect the exfiltration of bogus software
that has been purposely planted in the system. To provide the means of
detecting the exfiltration, the system we developed injects a beacon into the
bogus software. In addition, the decoy system should be clearly conspicuous
to adversaries. The bait, any bogus software, should be accessible and visible
to adversaries and hence provided in a realistic honeypot . Lastly, the decoy
system has a large set of bogus programs from original projects that are
different from every other one. That is, variability should provide a decoy
system with a variety of attractive bogus programs.

Code transformation is performed by inserting new code or modifying
existing code into a seed program. There is a potential problem with such
transformations. If only a small part of the program is affected by the trans­
formation, and if the inserted or modified code doesn't look like normal code,
it will be easy for adversaries and to identify bogus programs. Since bogus
programs within the software decoys must be differentiated from original
programs, the bogus programs themselves have additional core properties .
They must be:

• Compilable and Executable: The bogus programs should be compil­
able without any error. The programs should be also executable for a
reasonable amount of time so that the decoy can detect the software
exfiltration and identify bogus software. The program that is to be
successfully compiled should be run to produce observable behavior of
the original software. These two properties are essential requirements
to make the bogus software believable.

• Indistinguishable: An adversary should not be able to recognize whether
a bogus program has been transformed from a particular source code
or not. The adversary should have great difficulty in distinguishing
bogus programs from a lot of other source codes.In other words, we
should produce an unbounded collection of distinct and variable bogus
programs. This property is crucial so that adversaries cannot easily
determine whether a particular software source code is fake, nor that
it is a derivative of an open source, non-proprietary project .

33

• Believable: The transformed program should logically look like a nor­
mal program. The program should have observable behavior similar to
the original program. This property make adversaries trust it as if the
bogus software were true and real source codes. While in the process
of transforming on original seed program, we should try to maintain
the original program structure and keep logical control flow so that the
bogus software look likes real runnable source code. In addition, the
logical structure and control flow can make bogus software resistant to
some degree of static analysis.

Having discussed the properties that are need for decoy systems, and de­
fined the additional properties that bogus bogus software should possess, we
will show that these additional bogus software properties can be validated
through extensive experiments with real open source projects. Widely ac­
cepted software metrics, such as similarity and software complexity, provide
evidence of the practicality of our proposed bogus software generator.

6.1 Software Decoy Generator Architecture

This section will provide an overview of the system architecture that we
designed and implemented to create a software-based decoy system, depicted
in Figure 3. The system is given an original software project including several
programs (in Java) as an input seed. It then produces a bogus project having
a series of bogus programs. The generated bogus project is maintained in
one of the software version control systems, containing different versions of
the bogus project.

There are three requisite processes to create the software decoy: program
analysis, code obfuscator, and program generator. First, the structure of each
program in a project with diverse source codes should be syntactically ana­
lyzed. The program analysis output is an information table that has a data
structure including the identifiers, type, scope, declarations, and relation­
ships for variables and functions. Second, after the static program analysis,
a code obfuscator transforms each of the original programs in a project into
new bogus programs, using various code transformation methods that we
designed. A fake project consists of a series of transformed bogus programs.
Lastly, to generate different versions of the bogus project for software version
control management, the generated bogus project is transformed during pro­
gram generation. In addition, each of the generated bogus programs has a

34

Figure 3: Software Decoy System Architecture

beacon inserted to be able to detect the exfilt ration of proprietary software.
The current target language is Java; however, the proposed method is gen­
erally applicable for all other languages such as C, C++, Python, C#, etc.
The following subsections describe detailed methods for each process.

6.2 Analyzing Source Code

For any given input project seeding t he synthesis of a software decoy, the
proposed system fi rst analyzes the syntax and the structure of each program
in the project. ANTLR (Another Tool for Language Recogni tion) was used
to extract information about syntax and the static semantics of each pro­
gram. ANTLR is a parser generator with LL(*) based on a context-free
grammar argumented with syntactic and semantic predicates. The current
prototype targets Java-based projects, but the proposed system is easily ex­
tended because ANTLR provides a flexible and language-agnostic grammar
development environment .

As for program analysis of a target project, we obtain information about
what classes/variables/methods are defined, how t hey are related and where
they are used. The extracted information includes (1) package declaration
and import information, (2) class and interface names, (3) member variables
names and types, (4) member method names, types, and parameter informa­
tion, (5) mapping between package and class/interface, (6) mapping between
member variables and method, (7) mapping between class and interface, and
(8) the scope of local variables.

The information is significant because when source codes are t ransformed

35

from one to another, other places matched with or related to the codes must
be consistently modified in order to make the overall project compilable and
runnable. In Java codes, symbols can be defined by package, classs , inter­
faces, variables, or methods. In addition, we also store the type information
for the codes in order to avoid name conflicts. Local variables have different
scopes depending on where they are defined. When code transformations are
performed, the scope of related local variables must be determined to avoid
errors where variables are undefined and uninitialized.

Finally, through program analysis, we create two databases that are used
to generate a bogus project. First, we analyze the syntax of Java standard
APis to generate a database of standard classes and methods. This database
is important to obfuscate a target program carefully since the APis should
be mostly preserved during code transformation. Second, we extract sam­
ple classes and methods from Java sample source codes collected from the
Internet. This database is utilized to insert junk code in obfuscating target
programs.

6.3 Obfuscating Source Code

After determining the syntax and the structure of target programs, the orig­
inal programs in a project are obfuscated in order to generate a series of
bogus programs. Code obfuscation has been used in a digital rights manage­
ment system. The general obfuscation aims to make software as convoluted
and hard to understand and to analyze as possible by automated reverse­
engineering or by users. The obfuscated codes are often unintelligible and
unclear on the surface of the code. Such code obfuscation techniques also
enable us to create bogus programs that looks like real source codes, but are
in fact fake. Such bogus programs make it difficult to distinguish between
original source code and bogus source code.

The code obfuscator transforms original programs into bogus programs
by making thorough changes in the form, syntax, or semantics of the origi­
nal programs. This is called a code transformation as Definition 1. In fact ,
the code obfuscation in the literature preserves the semantics of a program.
In other words, any transformation does not alter the program semantics,
but rather it hides the semantics and makes them difficult to understand.
However, the proposed system modifies the semantics of a program slightly
while the program is being continuously transformed. The proposed sys­
tem has four different code transformation methods: statement, structure,

36

semantic transformation, and junk code insertion. All the code transforma­
tion methods are closely related and the effects are interchangeably affected
in programs since relevant variables/methods/classes should be changed to­
gether. In other words, the result of one code transformation might include
the result of another code transformation.

1. Statement Transformation: This transformation renames all the vari­
ables and methods for each statement in a program. Based on syntax
information from program analysis, it alters the name for all classes,
methods, and variables in an original program. When changing all the
names, the associated statements for variables, methods, and classes
should be automatically renamed in all of the programs in a given
project. The state- ment transformation replaces the original names
for classes, methods and variables with bogus ones. When changing
the names of classes and methods, the bogus names are selected in
the database of glossary and dictionary words, as in Figure 3, accord­
ing to user-defined themes, such as shopping-related, health-related,
financial-related software, etc. The bogus names are redefined and re­
named as appropriate words in the glossary database. This is a basic
code transformation before applying other code transformations.

2. Structure Transformation: A program is structured in different lines in
order to be more readable, but it does not have strict and firm rules.
The original structure of a program can be changed in various ways:
(1) reordering primitives and methods, (2) breaking abstractions, (3)
expression change, (4) control structure modification, and (5) changing
data types.

First, we can randomize the placement of as many modules within a
program, methods within a module, and statements within a method
as possible. Second, by reconstructing new packages and modules, it
breaks the original abstraction of a program, which thwart adversaries
from understanding the original target program. Third, the proposed
system replaces operators, such as assignment, multiplication, and com­
parison, into different expressions. There are an arbitrary number of
ways to turn a given arithmetic expression into a sequence of different
elementary statements. For example, multiplication by a constant is
often turned into a sequence of less obvious adds and shifts. Fourth, the
control structures in a program can be used interchangeably to alter the

37

structure of a program. The control structures include a conditional
statement(e.g. if or else), a loop statement, (e.g. for , while), a selec­
tive statement(e.g. switch), and a jump statement(e.g. goto, continue,
break). Lastly, data types in functions' parameters and variables are
also changed if possible.

3. Junk Code Insertion: Bogus programs are diversified while generated
in different ways by inserting any junk code as additional parts in a
program. To insert junk code, there are several possible methods: (1)
dead code insertion, (2) redundant statements, (3) method injection,
and (4) code copy.

First, the proposed system can add any number of blocks that can
never be executed, such as classes, methods, etc. These are called dead
code. Second, we place irrelevant or relevant statements for each line
of a program. For instance, another variable or constant value can be
declared and the variables are used any place in a program. Third ,
the proposed system clones bits and pieces of different methods in any
given program, and the copied code looks different from the original
one as a result of the code transformation, such as renaming, changing
parameters in a method, etc. Lastly, from the database of classes and
methods for junk code as in Figure 3, the proposed system selects one
of them and reuses an arbitrarily chosen part of the code to generate
bogus programs.

4. Semantic Transformation: We can also change the semantics of a pro­
gram in different ways. First, the control flow of a program is naturally
obfuscated while performing the proposed code transformations. Sec­
ond, through call graph modification and data transformations, the
semantics of an original program can be changed. Specifically, the use
of inserted methods and inserted code blocks first tweak an original
call graph. Second, the data transformation replaces data including
constants and parameter values with other reasonable data. There are
many ways to accomplish data transformation; return values can be
changed or different constants are assigned. However, the transformed
program should preserve the observable behavior defined earlier.

Definition 1 Let T : P ~ P' be transformation from program to program.
T is code obfuscation, where P8 = T (Po) has similar observable behavior.

38

T is a set of specific transformation elements, t 1 , t2 , ... tn . We enumerate
several transformation techniques above. There are many other transforma­
tions possible, but what we have designed is sufficient for a proof of concept
demonstration.

The bogus programs are also designed to have observable behavior that
the adversary expects; in other words, the bogus program has the same
or similar semantics as the original program. For example, in the case of
software decoys designed for a bank, the adversary would naturally expect
the program to have functions relating to withdrawal, deposit , interests, and
so forth. We define these functions as observable behavior. We do not
guarantee that the bogus program is correct or complete, but it does compile
and appears to perform some "reasonable" functions . If we seed source code
generator with an open source project, to increase the likelihood of producing
a functional bogus program with believable and observable behavior, while
avoiding disclosure of any functional information of the proprietary source
code we aim to protect.

The generated bogus program, P8 , should be different from the original
source program, P0 . The two programs can be evaluated according to two
metrics: software similarity and containment. Similarity 6. is able to deter­
mine if two programs are very similar. Since the two programs, ? 0 and ? 8 ,

should be very dissimilar, the similarity should be less than a threshold A,
per Eq. (1):

6.(Po , Ps) < A (1)

Containment 8 evaluates if one program is partially contained in another.
Because the transformed bogus program PB should have very small parts of
code of the original source program Po, the containment should be less than
a threshold j3 as in Eq. (2).

8 (P, p) = Numbero[linesmatchedbetweenbogusso[twareandoriginalso[tware < j3
0' B Totalnumbero[linesinoriginalsoftware (2)

The Similarity 6. of two programs is a number between 0 and 1, such
that when the similarity is close to 1, it is likely that the two programs
will be approximately the same. Similarly, the containment 8 of P8 in P0

is a number between 0 and 1 that, when close to 1, indicates that P8 is
approximately contained within P0 . These two measurements are estimated
by well-known software plagiarism tools .

39

As explained above, there are many different techniques for code trans­
formation. Based on these code transformations, the proposed system can
generate an arbitrary number of different bogus projects, as many as we
demand. The current system stops generating a targeted bogus software
when the similarity falls below a predefined thresh- old. This iterative al­
gorithm makes it difficult for adversaries to detect any bogus software from
real software, and can thus achieve one of the bogus software properties ,
indistinguishable.

However, each language has conventional rules which should be preserved
when coding as well as transforming. First, Java standard libraries should
not be changed, although we can add extra standard libraries to inject junk
code on beacons. Second, keywords and reserved words should be preserved.
There are many words, such as public, private, return, class, package, im­
port, etc. These words are saved in the database as in Figure 3 to carefully
transform source codes. However, as we stated, any user-defined names, such
as package names, class names, method names, etc, can be changeable.

Some of the code transformation methods are often used for common
optimization techniques. Copied codes, fake variables and functions are also
used to protect software itself. In our method, these code transformation
methods enable us to create as many bogus programs as we need. And if an
adversary detects the use of these techniques, they may not be tipped of that
the program is bogus. They may logically infer that these methods are being
employed by the project to protect their software from reverse engineering.

Figure 4 shows an example of code transformation . As seen, the code
obfuscation changed package names, class names, member variables, local
variables, and method names. The relevant statements were also changed
throughout all of the programs. We altered the data type "int" into "long"
whenever feasible, as shown in line 5 of Figure 4 (b). In addition, we changed
the expressions for the if-else conditional statement. Lastly, we inserted a
junk method between line 13 and line 16, and injected multiple statements
in lines 8 and 9, as shown in Figure 4 (b), that may be used in other places
in the code.

40

02': lonporl x.y.z.' ;

Ol: pt~brc crau a t

04: ltllblicStJitiQVIr _a.
D5: ltllb-hti 'llnr_b.

06 · pubht vo1d htnuO (
01; IIOit loc.al_t ;

01
09 :
10: l

if lloe&l_l .. 100JJ)
IOttt..a · loc~L•,. t.O:

11 : 1t11~Hc Ullic vot4 ma, r~ (Str lnoU arosl (
1l Bob iJ • MwiO.

13: Ob1~1.hmc_a() ;

14:
15: 1

(a) An Ori11inal Sowce"""""" Befor< Obl'utcati<m

02; !I~DO ft Y .W . l. •;

03: o-ub1ic tliiU C (

04: pu~J icS!r lnt nr_ • :
05~ putt1ie left9 \'I ,..J;

05: pu~lic void ."fttli!o4..;c() I
07: floai ~U1 :

01:
01:

10:

"
12: I

1:"1.1 111\PI'!t • All1 !' .U!!-dont0 • 10;
t•mpl r: l • tii"!!Jl P~t -t 1

if (lc-n lt . ~l :> 5)
~o;i..;c.~ • IOUi ; ~ · l C;

l l : lhi!J ic >fOld 'M.I!t«Ly(l»oo!u!' Clltl'n: a} t
l4· lf{Ufl "ft l j
15: "Y~I_'("Vlf..:J • 100.0,
11· I

17: liVtt!lc lttt!C VOl~ rnl!n{StuntU lf{lll) t
11- c o&L~. ttn en;

1t- I
itO" I

Figure 4: Example Code Obfuscation for Software Decoy Generation

6.4 Generating Bogus Programs with Beacons encap­
sulated in a project

Based on the code transformation methods, the proposed system generates
an arbitrary amount of decoy (bogus) software with any given input. The
fo llowing outline below explains the method to generate a large number of
different programs or diverse versions of similar programs. First, for any
given input project, the proposed system generates different bogus software
programs either from the original software or from the bogus software. Sec­
ond, from the bogus software, the system produces a series of similar bogus
programs so that software version control systems maintain a chain of history
for the original project.

1. Generating different bogus software

• From an original software: Po !:4 Pt
(Note that T1 = t 1 , t2 , , tn,i,j,k = 1, ... ,n and ti is a specific
transformation in T)

• From previous bogus software: pk !:4 P1
B Bn

Note that Tj = t 1 ,t2 , ,tnandi,j,k,l = 1, ... ,n and ti is an ele­
ment in T)

41

2. Generating various versions from the bogus software for the CVS repos­
itory

CVS(PB..) ~ CVS(P~_J tn-l ... CVS(PB,) ... ~ CVS(P~)

(Note that ti is an element in T, m=l or k, and i,l,k = l, ... ,n)

Looking at the first step in more detail, the proposed system creates a
variety of decoy software from an original source code. Each resulting bogus
software is different from every other one. In addition, the system uses
previous bogus software to generate other new and different bogus software.
The resulting bogus programs are dissimilar to each other depending on the
number of iterations of code obfuscation (T). For any given input , the code
transformation produces different kinds of decoy programs that are less than
a predefined threshold of similarity.

Second, a project is managed by software version control systems, such as
subversion, git, etc., to keep updating new codes and tracking different soft­
ware versions. To make decoy software realistic, the bogus software should
be maintained to look like a real project by using one of the software ver­
sion control systems. We generate a series of different versions from the first
resulting bogus software under the CVS version control system.

Specifically, the code transformation(T) has a set of different elements,
tl, t2 , , tn. One element of the transformation method, ti, is selected to
generate slightly different versions of the bogus program every time. The
different versions do not need to be dramatically transformed, and each ver­
sion in a series of bogus software from one particular input is analogous to
every other version. For example, it would be sufficient to generate differ­
ent versions from a bogus program by simply changing one single statement,
such as altering one variable declaration. However, to make it more realistic,
the proposed system tries to maintain approximately the same number and
modification size of two consecutive versions as the original project. The
statistics used to generate an archive with typical number of updates and
modifications were gleaned from a sample of Open Source Project Archives.
Thus, the generated archive should appear as a realistic project .

Finally, each bogus program has a stealthy beacon that provides a signal
indicating when and where the particular bogus program was used. The
beacon plays a valuable role in identifying the exfiltration of software, by
throwing an alert to a server. It is related to detectability of the decoy. In
software decoys , the beacon can be embedded in several ways: in documents

42

accompanying the source code, at the time of compilation, at the time of
execution. Typically, software provides several documents such as guidelines
for compiling and execution instructions, and an API description. For those
documents, our proposed system adopts a technique to embed the beacon into
PDF or HTML. The signal mechanism utilizes the execution of Javascript
within the document.

For software embedded beacons, we can embed the codes that sends sig­
nals to a server upon program compilation or execution. Several techniques
can be provided. First, the bogus program can be modified to use a library
that must be downloaded in order to successfully compile it. Then, the re­
quest for the library on the server is a positive indication the bogus program
is about to be compiled. In addition, similar activities can be performed
when the bogus program is about to be executed. For example, when the
library is first loaded into memory, the library initialization routine should
be able to play this role by using library constructor and destructor functions
for dynamically loaded (DL) libraries.

43

Figure 5: Server Architecture

7 Application Server

By design, the allure defender system is language and architecture indepen­
dent . Figure 5 shows a forward facing system, application host, and backend
support modules .

Our ini tial prototype was deployed on a tomcat application server due to
the specific Java libraries we are utilizing. These java libraries and packages
can create, manipulate, and monitor a wide variety of document formats
including pdf, microsoft word , and excel.

Tomcat [27] is a java based applicat ion framework which can be deployed
on most modern operating systems and works in conjunction with java servlet
technology to seamlessly bridge backend servers with front end website.

The components will communicate using the defined API and be packaged
as independent components to allow maximum flexibility with the current
system, and the ability to extend the system using standard programming
components .

44

7.1 Requirements

Tomcat requires an underlying operating system and host system to run. We
currently are running a test system as a virtual machine on a Ubuntu Linux
host vm. The tomcat version is the one packaged with t he current version
of Ubuntu 11.04 (As of July 2011).

7.2 Scale-ability

In order to allow scale ability of the system we have modulated specific com­
ponents and standardized a common api between components. In addition,
we have designed it to be fail-safe, so that no specific module's failure will
render the system inoperable. For example, the database hook class, allows
the database backend to fail-over to a cache file, so that when it comes up
again, we can forward the cache requests to the database.

7.3 Customization

System customization can be passed as arguments during start-up or specified
in specific table settings. There is a configuration section which defines the
following initial system customization:

• Title system title which shows up on the correspondent.

• Version short version string to show when deployed and what version
of the software it is running

• DBname database name.

• DBhost database host machine.

• DEUser initial database user for setup.

• INFOLINK url to more information about the local system (if exter­
nal) .

• LIBlocation libraries needed by the system if external.

• URLLink main website link.

45

This list can be extended and customized. A GUI windows allows these
parameters to be changed, and the values are kept in a text file which can
be edited. These values are accessed during system run-time and can be
configured for each installation.

7.4 Administration

Tomcat includes a management webpage which allows one to deploy, reload ,
undeploy component packages. It uses ".war" files which are jar like files
containing the resources necessary by the application being deployed. In
addition, command line programs bundled with tomcat allow administration
to take place.

7.5 Upgrading

Deploying an updated version of the component is as simple as either copying
an update ".war" file into the WEBAPPS tomcat directory or undeploying
and redeploying the application via the tomcat admin page.

7.6 Debugging Problems

Tomcat is configured to dump it standard output and error output to a file
called "catalina.out" in whatever the default run directory will be. When
there are problems, simply check the latest catalina.out file for information.
In addition the system logs internal actions to the logger subsystem which
are kept in the log tables in the database.

7. 7 Past Known issues

In older versions of tomcat it was necessary to pass a java headless argument
to the underlying engine hosting the application. This has been fixed in
newer versions. In addition older versions of tomcat has been too strict on
what applications were allowed to execute, which was problematic since our
application processes and stores documents on the local system on behalf of
the user . These issues do not exist on the last few versions of tomcat.

For security reasons, it is best if the system is run as a non administrator
user, so in case security is compromised, the damage will be minimized.

46

8 Sy~tem Front End

The system front end represents t he forward facing end of the system which
allows the user to

• Manage accounts

• See an overview of decoy activity

• View system logs

• Customize the installed system.

• Backup and restore

• Database maintainance

8.1 Web-based GUI

The front end of the Allure defender will be a Java servlet website running
on Tomcat on a Linux platform. The document generation plugins will be
developed in Java in addit ion to the backend system. The system will allow
the administrator full control and customization of the running allure system.

8.2 Accounting system

The accounting system maps users, roles, account status, emails, passwords,
groups and other information related to accounts on the local installed sys­
tem.

8.2.1 Account Creation and Registration

Accounts are created in one of two ways. Users can request accounts using
the registration button on the main webpage (when enabled). An email is
required so that a verification code can be emailed to the user to allow an
email to be verified. if account passthrough is enabled, once verified the user
account is created with lowest level privileges. If account passthrough is not
enabled, the administrator is notified that an account is waiting approval.
Each user can belong to a specific group (default group otherwise), which
allows the managers to subdivide users by group.

47

Another opt ion is for an administrator to import accounts en mass using
a tab-delimited text file or similar means. Roles can be specific in the file or
one role can be applied to all imported users.

A final opt ion, left for t he future, is to integrate wit h an organization's
LDAP server.

8.2.2 Account Roles

Roles represent the user privileges in the system with the following roles
specified:

• Root : these users can customize the local inst all and restart the system
as necessary. They can opt to receive specific alerts upon except ional
predefined events. Root level users are expected to be installers. In
addit ion Root users are also Administrators.

• Administrators: these users can add other users and view high level
reports on all groups users which t hey are associated with. There
is a 1 to N mapping between Administrators and groups. They can
enable/ disable accounts . Reset passwords and also change user level
basic information (e.g., email , group).

• Managers: these users can view high level reports on specific groups of
users. There is a 1-to-N mapping between managers and user/groups.
Managers can set user level permissions and enable/disable accounts.
They can also reset passwords.

• Users: these are specific users which belong to specific groups. This
role allows a user to create or checkout decoy system units (e.g., docu­
ments) and/or manipulate template, etc.

8.2.3 Account Status

Each account in the system will be associated with one of the following states:

• enabled: active user with specific privileges associated with the ac­
count

• waiting: approval: recently created and waiting confirmation

• disabled: account has been disabled, t his includes expired accounts

48

• unconfirmed: unknown status default if not set specifically in the
system.

8.3 Setting Customization

System setting will be customized using either a text editor on specific text
files in a config directory or using a front end gui to view and choose specific
customizations. The values will be loaded at startup into the database so
that can also be updated via a plaint text file placed in a specific loading
directory.

The system will provide reasonable default settings for all resource set­
tings , text strings, local settings to allow an installation to work with mini­
mum user customization.

Specific customization settings of the system will be able to be saved,
loaded and compared so that administrators can trace customization updates
over time for debugging and forensic purposes.

As an example, one should be able to enable or disable the registration
button from appearing on the main webpage. This will have the effect that
only administrators can add accounts, rather than having users request ac­
counts. Which window are displayed, the titles, the types of decoys users
can create will all be controlled by the customization system.

49

9 Database Backend

The database ties together the components of the system to allow users ,
decoys, documents, and activity triggers to operate smoothly. A relational
database stores local user accounts, generated documents, content informa­
tion, use logs, decoy logs, and system settings.

The database does not necessarily have to be deployed on the same server
as the deployment host. This will allow for security, redundancy, and scal­
ability. In general we try to mitigate against any single point of failure of
the system. In order to generalize the system to database communication, a
database communication class is defined per database type. The purpose is
to present standard method calls to the system.

This design allows the main system to use standard method calls, which
are translated by each database communication class into low level sql calls.

As an example, our initial implementation implements a MySQL database
hook and java based DB hook. The advantage of the java based db is that
no other software needs to be installed or configured.

The system defines database interfaces to deal with specific database
types and database manager which is implemented to create/adjust specific
database tables. In general these operations only occur during setup and
backup and rollback and reloading of tables . The actual communication is
done with the database handle classes.

Interface DBConfig- set of functions which will be needed when setting
up the db. Each table should be a separate method call so that new tables
can be defined and modified in the future.

Class DBSetup - this class will be responsible for calling setup func­
tions which the individual database hook classes will support. They define
the schemas per table, which each database type might implement slightly
differently.

Class JavaDBHook - will interface to derby based db installations.
When the system uses a Java based db this is the class which talks to the
software.

Class MysqlDBHook - will interface to mysql installation. This re­
quire a prior mysql installation either local or remote with correct user level
permissions to create and modify tables in the database.

The following general database functions will be supported by each indi­
vidual class:

50

• void AddUser(String Email,String IP,String Password,Int GroupiD) -
Allows the system to add a user to the accounting system. A user is
associated with an email address and some ip for accounting purposes.
Passwords are kept as MD5 strings in the database. GroupiD is unique
number associated with this user and another table which defines the
permissions this user has.

• int CheckUserStatus(String Email) Checks the user status if enables or
disabled or expired or suspended.

• SetUserStatus(String Email,int status) Checks the user status if enables
or not.

• boolean CheckUserPassword(String Email,String MD5Pasword) checks
if the password for this user matches

• boolean RequestChangeUserPassword(String Email) set in motion pro­
cess to change the user process

• boolean ChangeUserPassword(String Email,String MD5Pasword) change
the password for this user

• boolean AddBeaconToken(String Email,String beacon) registers the
beacon to this user

• boolean CheckBeacon(String Beacon) do a check and send out an alert
based on user preferences.

• HashMap GetUserPreferences(String Email) get all user preferences in
the system

• boolean SetUserPreferences(String email,HashMap prefs) set the users
preferences

• int GetUID(String Email) get users id in the system

• int GetGUID(String Email) get group id in the system

• void SetRelated(UID,GUID) add user to the group

• Hashmap CheckUserAlertPreferences(int UID) check the users alert
choices

51

• boolean BackupDatabase(dbname, location) set in motion a snapshot

• boolean RestoreDatabase(dname, location) set in motion restore

• String Get Version() get back information about current deployment

• boolean Set Version(String) set local version information

• void SetLogEvent(int type, String body, int sourcefiag, String IP) log
some unique event

Again, each hook class , translated these high level calls to the specific
sql/schema mapping.

9.1 Fail over Redundancy

The database is the heart of the backend of the sytem. As such, this rep­
resents a critical layer of failure. To protect the integrity of the system we
recommend a master slave database setup with automatic sync. The setup
if beyond the scope of this manual.

From a high level, events in the datasbase are atomic (i.e. do not represent
specific states) which makes it easy to sync deltas between master slave
databases or backup the database every time X.

9.2 Tools

The frontend of the system depends on the database functioning correctly.
We have included various tools to allow easier maintaince of the database
backend . With more sophisticated database installations, any outside tools
can also be utilized to administrate the backend database.

9.3 Maintenance tools for DB

The database communication classes need to allow the sytem to backup and
reload a snapshot of the database. Specific routines are called from the gui
facing functions in each database hook class to allow this to take place .

52

Table 1: User Table
Name Type D efault Note

Username varchar(128) not null Name associated with the ac-
count (if any)

Email varchar(128) not null Registration email

CreationDate sqldate current Date account created

CreationiP char(26) not null Where verification request came
from

Status short int unknown Account status

RegistratonDate sqldate current

RegistrationiP char(26) not null

UseriD unique long not null Unique ID of user internal in the
system

PasswordHash char(64) not null

Table 2: Group Table
Name Type Default N ote

Group varchar(64) not null String of group

GroupiD Unique long not null unique long id of group

StartDate sqldate not null When group was created

9. 4 Table Schemas

We now outline all the internal tables in the database.

53

Table 3: User Group Table
Name Type Default Note

UseriD long not null User ID

GroupiD long not null Group ID

Date sqldate not null When user added to the group

Table 4: Account Creation Table
Name Type Default Note

Name varchar(128) not null Registration Name

IP char(26) unknown Registration IP

Secret Hash char(64) not null Verification string

Date sqldate current date When requested

Email varchar(128) not null Email used

Table 5: System Settings Table
Name Type Default Note

Main Title varchar(255) BLANK Title on main page

DataBaseType varchar(32) JavaDB Which database is being accessed

DB Name varchar(64) AllureDB Database name

DB Password varchar(64) AlLuReDb Password to database

DB Host varchar(255) localhost Host of the database

DB User varchar(255) root User to access the db

defaultEmail varchar(255) rootlocalhost Main admin email

54

Table 6· Alerts Table
Name Type Default Note

Alert Code Unique ID for the specific code
condition

Condi tionAlert What condition is met for the
alert to be triggered by the sys-
tern

Action What action to take upon the
alert condition being met

Status If enabled or disabled

Table 7: Notification Table
Name Type Default Note

Alert Code int not null Which alert level to send on

UseriD User ID associated with this alert

Subject Custom subject line for alert

Body Customized body message for the
alert

Alert String varchar(255) plain text of alert .

CheckCondi tion varchar(255) some kind of condition to match

CheckEquali ty int if less than great or equal to con-
dition

CheckValueThreshold varchar(32) some value to alert on

Table 8: System Log Table
Name Type Default Note

IP char(26) What ip is associted with this log

Date sqldate Date of message

Activity varchar(255) predefined string of activity sta-
tus

Location local system or remote

55

a e T bl 9 U sage og a L T bl e
Name Type Default Note

Date sqldate Current Date of usage

IP char(26) NOT NULL IP asociated with usage

UseriD int NOT NULL

ActivityCode NOT NULL

Note varchar(255) More information about the spe-
cific usage of the system

Table 10: HMAC Table
Name Type Default Note

UID int NOT NULL User in the system

Pattern String NOT NULL Regular Expression Seed

Flag int Good vs Bad for HMA C

Date int When this hmac created

Table 11: Decoy Creation Table
Name Type Default Note

Date sqldate When Beacon requested

IP char(26) IP requesting it

UseriD int User associated with the beacon

BeaconHash varchar(255) Hash Represneting the beacon

Beacon Type Code for which type of beacon
this is

FileLocation varchar(255) file created and its location

Contentlnfo blob variables which were used during
the creation process

Templatelnfo blob Seeds used to create the docu-
ment.

DocumentiD varchar(255) unique document id

56

Table 12: Decoy Activity Table
Name Type Default Note

Date sqldate

IP char(26)

BeaconHash varchar(255) unique hash

Note varchar(255)

UseriD int user associated with the beacon

Beacon Type

Table 13: Alert Configuration
Name Type Default Note

UseriD int User ID from account tables

Destination varchar(255) Where the alert is going

Type int Type of destination (email, text,
etc)

Enabled boolean is alerts enabled

Note varchar(255) Note associated with alert

Table 14: Aler _QC Table
Name Type Default Note

UseriD int User ID

CCUseriD int Which ID should be ccd on the
alerts

BeaconHash varchar(64) blank Specific hash to CC (blank means
wildcard)

Note varchar(255) Note associated with alert

57

10 Logging infrastructure

The aim of the logging system is to create a trail for forensic and account­
ability of the system. User level activity such as account creation, tweaking,
log-in/ logout, etc will be stored with a timestamp and when possible associ­
ated network ip associated with the action. In addit ion the system start up,
reboot, and except ion events will be logged to the cent ral logging system.

Interface Logging {
boolean WriteLog(int logtype, String title, String Body, int flag);

ArrayList GetLogs (int logtype, int flags, Date StartDate, Date
EndDate , boolean matchregexp, String regexp);

boolean exportLogs (int logtype, int flags, Date StartDate, Date
EndDate, boolean matchregexp, String regexp, String filelocation ,
boolean overwrite, char delimin);

boolean importLogs(char delim, String filelocation, boolean
eraseFirst);

int getLogSize() ;

String getLogStatus() ;
}

10.1 System Logging

System level logging will log start/shutdown. Except ion events, and system
interaction between component . Basically when database ent ries are written
we would like to see some sort of activity in the system log table to be able
to trace issues if something goes wrong.

10.2 Usage Logging

User level act ivity such as document creation, sign on and off, document
retrieval. template usages, etc.

58

10.3 Decoy Logging

Decoy activity such as creation and pings are logged here. Any information
which is based in as part of a beacon is also associated with these records.

The front end will also allow the system user the ability to search through
the logs by log type, constrained by time, using some keyword matched. The
results of the entire logs, should be available for export, depending on user
privilege level.

10.4 Backup and Restore

This section of the system will allow the administrator to create a snapshot
of the current files, settings, and decoy objects to backup a point in time.
In addition, the backend database should be able to be backed up for both
maintenance and forensic purposes. We will dump the raw sql to a tar.gz
file with database table setup dumped separately (rather than inline). The
system will create metadata so that points in time can be named so that
rollback to a specific state can occur. This will be beneficial for testing out
new features and plugins.

59

11 Decoy System

The decoy system consists of enticing beacons embedded within some con­
tainer entity. These beacons when t riggered will alert the system and can
be associated with a specific user, t ime, machine, and event. From a user
point of view the beacons can be passive beacons (no user notification, such
as file monitoring, or quiet dns lookup) , half passive (request permission, pdf
remote url request, remote video), or active (need user permission, prompt
to continue). Users can create specific decoy containers for deploying specific
decoy types. Some container object might contain multiple beacons in order
to increase the likely hood that one will return and trigger a real time alert .

11.1 Decoy Mechanisms

In order to facilitate easy decoy creation, the internal beacon class exposes
the following interface:

interface DecoyObject {

String GenerateToken() ;

void CreateBeacon(Unique StringHash);

String GetDecoyObject();

}

• GenerateToken generates a unique hash string

• CreateBeacon takes a unique token and creates an internal beacon rep­
resentation

• GetDecoyObject returns a text based representation of the decoy which
will embedded by the particular container holding the beacon

11.2 Beacon Notification System

A beacon is considered to ping home if a unique string associated with any
of the embedded beacon is passed back to some system and triggers a match

60

against an internal database and fires off a notification in the system. Since
beacons are created to be unique, once received they need to be matched
in the beacon registration system to a specific user. if a beacon string does
not match, we must assume that something or someone is tampering with a
the beacon document. Since by the design there should be a zero likelihood
of anyone stumbling upon the specific beacon phone hone string. In fact ,
detecting the non matching beacons, is itself is an activity which can generate
an alert etc .

One can leverage CGI GET request to send back an arbitrary length string
with multiple command arguments to a specific server listening and correctly
processing the requests . This can come in over open or encrypted channels
since the random strings do not have any specific significance outside of a
particular installation.

We now describe implemented technologies which can be used alone or
in-conjunction with each other in a document container to signal an activity
beacon alert.

11.2.1 Remote image references

A remote image is fetched from within a document. In many documents, one
can embed a url so that the image is fetch and displayed inline. The beacon
system process remote image fetches and will return a valid image, while at
the same time register the beacon signal with the system and pass back any
information sent home with the beacon.

The user can assign a specific image to be returned or the system can
return a blank image (1 by 1 pixel of white square).

11.2.2 Tiny URL

A tiny url is created from a beacon url and embedded in the document .
The idea is that we can partially annoymize the url fetch in cases where the
user is prompted for confirmation. Tinyurl's are a standard way of sharing
complicated url information.

11.2.3 Remote URL touches

When we can embed a remote url , for example as part of a video movie or
a stand lone web document , we can monitor for these urls and either serve
legitimate content, or simply server an HTTP 404 (Not Found) error. One

61

good example is a robots.txt file which the system would be expected to see
as request (the fact that it returns a 404 should help the beacon be more
believable.

11.2.4 SIP phone number

When we can embed a phone number, in conjunction with a VoiP PBX
or other device that we can control or monitor, we can detect access to
these phone numbers and/or extension. While monitoring can also be done
in the organization's PBX (looking for outgoing calls to the decoy num­
ber/extension), this can be evaded by an adversary that uses another device
(e.g., a cellphone).

11.2.5 DNS

When we can use realistic but unique DNS names whose resolver servers
we can monitor (either through logs or through network eavesdropping), we
can identify accesses or even reconnaissance activity by an adversary, since
a requirement to access a system is to determine its IP address based on
its DNS name. In some cases (e.g., over-eager browsers and similar com­
ponents that do either prefetching or other types of network optimization),
such queries may be emitted even without the adversary having to undertake
specific action. In that case, these DNS names will act as beacons.

11.2.6 Honeypot and server log in information

In general, the enticing information (EI) embedded in the decoy documents
may contain URLs for different types of protocols , pointing either to hon­
eypots or to legitimate servers. Generally, the EI will contain a uniquely
identifiable component (e.g., a file path or username) that will allow us to
differentiate among decoys that point to the same general resources (honey­
pot or legitimate server). In the case of using legitimate servers, the use of
fake username/password information (which will be rejected but logged by
the server) in conjunction with log monitoring can provide a highly believable
and practically inexhaustible source of EI.

62

11.2. 7 Monitored Credit Cards

Previous work with a large banking company allowed us to use valid to empty
visa accounts to track the proliferation of online fraud in relation to decoy
documents . With the appropriate relationships to a financial institut ion (e.g.,
a bank, PayPal, Coogle Wallet, etc.), this can be extended and scaled up.

63

12 Document Generation System

The document generation system will combine the decoy system, content
generation, and output formatter to allow the system to create enticing decoy
documents . the template system will adopt content sets to customize the
generated documents.

12.1 Architecture Overview

12.1.1 Decoy System

Will generate a unique decoy string which will be used by decoy object to
generate decoy beacons. The method S"tring get UniqueDecoyString()" will
generate a unique decoy string based on random number and current time
and number of objects in the db. It will be then hashed to the create a
unique md5 of the decoy string. This will be used as input for a specific
decoy object.

12.1.2 Document Template Module

Document templates are composed of a tree like structure of the components
of a document, and a set of xmllike form objects which are embedded in the
document structure and give rise to the content of the document.

A Template object is a root node and list of sub children node. Each node
has a layout object which specifies which part of the document (if any) it will
lay itself out. We will use the gridlayout scheme to specify object layouts on a
paper document. in this way a template object can be visualized using some
gui frontend which will allow the user to customize and name each template
instance. We are modeling this after a mailmerge program where one can
outline a document and mark placeholder for specific values to be replace in
the document . Template replacement include 1 to 1 and n to 1 (either cycled
or randomly chosen). the template content will be provided at runtime with
the attached generation objects.

For example, an Email Message Decoy would be a composed of an Email
Template Instances describing an email document layout . And will refer­
ence replacement fields from a Sender, recipient, and conversation objects.
The conversation object might be a login conversation or vacation delegation
conversation depending on the generation system choice at runtime.

64

12.1.3 Template Variations

• Medical Forms

• Setup information for system

• Tax Records

• Shopping List

• Credit card application

• Bank Statement

• Mortgage application

• Online shopping receipt

• Cell Phone bill

• Account setup information

• Printed Email

• Scient ific report

• employment (hiring/firing) letter

• resume

12.2 Content Generation From Templates

The template content generation will be achieved using a collection of con­
versation objects, Identity Objects, and an associated t emplate types. A
conversation object requires one or more identity objects. The conversation
object, has a collection of forms which it queries the at tached identity ob­
jects for specific information. That way sentence structures can be tailored
to correct male/female and topics etc.

• UserlnfoClass - Object representing an individual user. Pert inent in­
formation includes date of birth, name, Address, Status, Income, Social

65

• CorporationObject - object represent ing some kind of corporate ent ity
which will be used in some of the conversation information representa­
t ions.

• Conversation - Object represent ing some snippet of information flow
between eit her set of users or user and corporate ent ity. Document
Output Module

The output module will take a template output and pass it to t he docu­
ment generation to create a specific pdf/ doc/rt f/etc format. Once successful
the output module will also register the embedded decoy string and asso­
ciate user with the database so that when beacons are received the user
can be not ified wit h the specific beacon. In addit ion a log wit h a string
sequence represent ing the choices from each module piece (template, conver­
sation, identit ies) will be logged so that the document can be regenerated if
the system needs to upgrade or update any parts of the documents creation
process.

boolean MainDocumentCreateAndRegister (
DBHandle DatebaseHandle,
String FileSavePath,
String DocNAME,
Logger LogHandle,
DecoyObject BeaconDecoy,
boolean verbose_setting,
DocumentTemplate docSource,
Conversation createdConversation,
UserinfoClass person[]
String UniqueToken,
String UserEmail);

66

13 API

In order to allow t he system to be useful , there is a web api framework
which allows users to fetch and generate decoys without having to sign in
through the web frontend. This allows system to extend t he Allure defender
functionality using their own front end or gui to interact wit h the underlying
architecture .

The web based api relies on ssl socket being enabled in the tomcat server.
This gives the user the ability to pass in user credentials and specific requests .

In addit ion, Beacon generation and document generation have been pack­
aged in indivdual jar files to allow easier deployment to stand along system.

13.1 Single Requests

A secure URL with the following parameters needs to be called in order to
generate a single document return .

\url{https://installurl :port/srequest?user=U&md5pass=M&single=1&doctype=D&tempat e=

where

• installurl is the installation of the system

• port is the port it is listening for ssl connections

• U is the user in the system

• M is t he md5 of the password

• Dis t he document type as defined in the system (1 pdf, 2 word, etc)

• N which template is used (this depends on the system and user set­
tings).

• T is the content variation type (email , reciept, etc).

The return is a binary file with t he content requested.

67

13.2 Batch Documents Creation

A secure URL with the following parameters needs to be called in order to
generate a single document return.

\url{https : //installurl:port/mrequest?user=U&md5pass=M&single=1&doctype=D&tempate=

where

• installurl is the installation of the system

• port is the port it is listening for ssl connections

• U is the user in the system

• M is the md5 of the password

• D is the document type as defined in the system (1 pdf, 2 word, etc)

• N which template is used (this depends on the system and user set­
tings).

• T is the content variation type (email, reciept, etc).

• H is a string representing some mix of documents

• Z is the number of

The return is a binary zip fi le with the content requested inside of it.

13.3 Future Additions

Future additions will include ability to send up and mark documents and
the ability to request enticing content and enticing decoys for use in outside
applications such as blogs, instant messages , etc.

The api can be also moved to secure sockets, to allow custom tools to
query and pull decoy information.

68

14 Deployment Guide

This section described how to setup a new deployment of the Allure system.

14.1 Obtaining the latest software

The latest copy of the software should be available in the svn repository.
Currently on fog .cs.columbia.edu. The project should have a live .war file
or can be rebuilt from source. There should be a build.sh script which will
allow the user to rebuild the system on their local os. Since this is java, the
latest .war file should be enough along with some specific support files to be
able to run the system

In addition there are a set of files include in bundle.zip which need to be
unpacked in the runtime directory of the running system. This is different
depending on how tomcat is deployed. For simplicity, use the Allure front
end to add the specific files to the system.

14.2 Installation Requirements

The system needs a basic Operating System and a local Java runtime pack­
age to deploy. One can also make use of specific database backend such as
mysql. The deployment and installation of mysql is beyond the scope of this
document. By default, there is a java based database which is included in
the main . war file.

In addition, Tomcat is required for running the .war file. Tomcat can be
installed from OS packaging or as a standalone installation. Specific security
settings on tomcat should be investigated, to lock down the installation, but
details are beyond the scope of the document.

14.3 SSL Support

To allow a secure channel browsing experience, one needs to turn on SSL
support on Tomcat. The instructions are on Tomcat's setup guide. Allure
Defender is currently agnostic as to whether SSL is being used, although
this should become a requirement for a final product and for remote batch
processing.

69

14.4 Sample Install

• If you are start ing from scratch, install and update your favorite OS.

• Install Java SDK (JDK if you are building from source)

• Install Tomcat. It would be advisable to create a non admin user and
download and unzip the tomcat files as this user . This allows tomcat
to run, but in case of compromise, will not affect t he entire system (one
hopes).

• Setup SSL at this point. Also setup tomcat admin account and any
permission files (if any). This can be done by editing the specific tomcat
xml files.

• obtain the fog.war file and/or rebuild it from source. It require ant to
rebuild . It includes all necessary jar files for pdf and word support.

• Log in to the tomcat admin panel, and deploy the fog.war file.

• Log into the allure frontend , customize it for your local environment .
ext add t he bundle.zip file to the required packages (should see an

error message about it).

• Through the tomcat admin panel, restart the fog deployment. One can
use the command line and restar the ent ire tomcat install.

• create local accounts and enjoy using t he system.

14.5 Test T he System

14.5.1 Registration Testing

In the ini t ial system, the registration window will show an image verificat ion.
This will show up correctly only if tomcat is allowing t he war file correct local
read/write permissions.

Attempt to registrer a new email and confirm an outgoing email has been
sent and recieved. Monitor the catalina.out file for debug messages.

70

..

14.5.2 Verify account

Attempt to follow the verification email link and register a new account .
Cataline.out will show any debug information.

14.5.3 Document Creation

The pdf document creation depends on key signing files and people.gzip fi le
being present in the run directory. During the document creation process,
one should see diffe rent taks being done by tailing the catalina.out fi le or
checking the system logs.

14.5.4 Decoy pings

Create a decoy uri and attempt to open it in a standard browser. You should
recieve an alert email if the system is up and running correctly.

71

.. •

References

References

[1] Bell D. E. and LaPadula L. J., "Secure Computer Systems: Mathematical
Foundations," MITRE Corporation, 1973.

[2] Bell, J. and Whaley, B. Cheating and Deception, Transaction Publishers,
New Brunswick, NJ. 1982.

[3] Butler, J. and Sherri S., "Security: Spyware and Rootkits ," Login, Vol
29, No 6, December 2004.

[4] Clark, D. D. and Wilson, D. R., "A Comparison of Commercial and
Military Computer Security Policies," IEEE Symposium on Security and
Privacy, pp. 184-194, 1987.

[5] Demers, A., Gehrke, J ., Hong, M., Panda, B. , Riedewald, M. , Sharma, V.,
and White, W ., "Cayuga: A General Purpose Event Monitoring System,"
CIDR, pp. 412-422, 2007.

[6] Detristan, T. , Ulenspiegel, T ., Malcom Y. , and Von Underduk, M. S.
"Polymorphic Shellcode Engine Using Spectrum Analysis, " Phrack 11 ,
61-9, 2003.

[7] Friess , N., and Aycock, J., "Black Market Botnets," Department of Com­
puter Science, University of Calgary, TR 2007-873-25, July, 2007.

[8] Hoang, M. "Handling Today's Tough Security Threats ," Symantec Secu­
rity Response, 2006.

[9] The Honeynet Project. http: I lwww. honeynet. org

[10] The Honeynet Project , "Know Your Enemy: Sebek, A Kernel based
data capture tool," November, 2003.

[11] Honeypots. http: I lwww. honeypots. orgl

[12] Honeypot Mailing List , Security Focus.
http:llwww.securityfocus.comlarchivel119

72

[13] Katz , John and Yehuda L., Introduction to Modern Cryptography,
Chapman and Hall CRC Press, 2007.

[14] Kravets, D., "From Riches to Prison: Hackers Rig Stock Prices," Wired
Blog Network, September, 2008.

[15] Krebs, B., "Web Fraud 2.0: Validating Your Stolen Goods," The Wash­
ington Post, August 20, 2008.

[16] Li, W., Stolfo, S. J., Stavrou, A., Androulaki, E., and Keromytis, A.,
"A Study of Malcode-Bearing Documents," DIMVA, pp. 231-250, 2007.

[17] Maloof, M. and Stephens, G. D., "ELICIT: A System for Detecting
Insiders Who Violate Need-to-know," Recent Advances in Intrusion De­
tection (RAID), 2007.

[18] McRae, C. M. and Vaughn, R. B., "Phighting the Phisher: Using Web
Bugs and Honeytokens to Investigate the Source of Phishing Attacks,"
Proceedings of the 40th Hawaii International Conference on System Sci­
ences, 2007.

[19] Orbiscom. http: I /www. orbiscom. com/

[20] Richardson R., "CSI/FBI Computer Crime and Security Survey", 2007.

[21] Smith, R. M., "Microsoft Word Documents that Phone Home", Privacy
Foundation, August, 2000.

[22] SongY., Locasto M. E., Stavrou A., Keromytis A. D., and Stolfo S. J ..
"On the infeasibility of modeling polymorphic shellcode," In Proceedings
of the 14th ACM conference on Computer and communications security
(CCS07), pp. 541-551, 2007.

[23] Spitzner, L., "Honeypots: Catching the Insider Threat" Proceedings of
ACSAC. Las Vegas, December, 2003.

[24] Spitzner, L. , "Honeytokens: The Other Honeypot" , Security Focus,
2003.

[25] Stoll , C. The Cuckoo's Egg, Doubleday, 1989.

73

[26] Symantec. Global Internet Security Threat Report , April 2008. Trends
for July - December 07.

[27] Tomcat Apache. "http: / / tomcat .apache.org/", "visited on June, 2011 ".

[28] Webb, S., Caverlee, J. , and Pu, C., "Social Honeypots: Making Friends
with a Spammer Near You," In Proceedings of the Fifth Conference on
Email and Anti-Spam (CEAS 2008) , Mountain View, CA, August 2008.

[29] Ye, N., "Markov Chain Model of Temporal Behavior for Anomaly Detec­
tion," Proceedings of the 2000 IEEE Workshop on Information Assurance
and Security, United States Military Academy, West Point , NY, pp . 171-
174, June 2000.

[30] Yuill, J ., D. Denning, and Feer , F ., "Using Deception to Hide Things
from Hackers : Processes, Principles, and Techniques," Journal of Infor­
mation Warfare, 5(3) :26-40, November , 2006.

[31] Yuill, J. , Zappe M., Denning D., and Feer F .. "Honeyfiles: Deceptive
Files for Int rusion Detection," Proceedings of the 2004 IEEE Workshop
on Information Assurance, United States Military Academy, West Point,
NY, pp. 116-122, June 2004.

74

